

pVACtools

pVACtools is a cancer immunotherapy tools suite consisting of the following
tools:

	pVACseq

	A cancer immunotherapy pipeline for identifying and prioritizing neoantigens from a VCF file.

	pVACbind

	A cancer immunotherapy pipeline for identifying and prioritizing neoantigens from a FASTA file.

	pVACfuse

	A tool for detecting neoantigens resulting from gene fusions.

	pVACvector

	A tool designed to aid specifically in the construction of DNA-based
cancer vaccines.

	pVACviz

	A browser-based user interface that assists
users in launching, managing, reviewing, and visualizing the results of
pVACtools processes.

[image: pVACtools immunotherapy workflow]

	pVACseq
	Features

	Input File Preparation

	Getting Started

	Usage

	Output Files

	Filtering Commands

	Additional Commands

	Optional Downstream Analysis Tools

	Common Errors

	Frequently Asked Questions

	pVACbind
	Prerequisites

	Getting Started

	Usage

	Output Files

	Filtering Commands

	Additional Commands

	pVACfuse
	Prerequisites

	Getting Started

	Usage

	Output Files

	Filtering Commands

	Additional Commands

	Optional Downstream Analysis Tools

	pVACvector
	Prerequisites

	Getting Started

	Usage

	Additional Commands

	Output Files

	pVACviz
	Installation

	Running pVACviz

	pVACapi Directories

	Starting Processes

	Managing Processes

	Visualizing Processes

	pVACapi Troubleshotting

	Installation

	Tools Used By pVACtools

	Frequently Asked Questions

	Release Notes

	Citations

	Contact

	Mailing List

New in release 1.5.7

This is a hotfix release. It fixes the following issues:

	The pvacbind run command would previously allow fasta input files with
duplicated headers. However, it would silently skip subsequent entries with
duplicated headers even if the fasta sequence was novel. With this release
pVACbind will now error out if a duplicate fasta header is encounterd.

New in version 1.5

This version adds the following features:

	This version introduces a new tool, pVACbind, which can be used
to run our immunotherapy pipeline with a peptides
FASTA file as input. This new tool is similar to pVACseq but certain
options and filters are removed:

	All input sequences are interpreted in isolation so corresponding
wildtype sequence and score information are not assigned. As a consequence,
the filter threshold option on fold change is removed.

	Because the input format doesn’t allow for association of readcount,
expression or transcript support level data, pVACbind doesn’t run the coverage
filter or transcript support level filter.

	No condensed report is generated.

Please see the pVACbind documentation for more information.

	pVACfuse now support annotated fusion files from AGFusion [https://github.com/murphycj/AGFusion] as input. The
pVACfuse documentation has been updated with instructions on how to
run AGFusion in the Prerequisites section.

	The top score filter has been updated to take into account alternative known
transcripts that might result in non-indentical peptide sequences/epitopes.
The top score filter now picks the best epitope for every available transcript of a
variant. If the resulting list of epitopes for one variant is not identical,
the filter will output all eptiopes. If the resulting list of epitopes for one
variant are identical, the filter only outputs the epitope for the transcript with the highest
transcript expression value. If no expression data is available, or if
multiple transcripts remain, the filter outputs the epitope for the
transcripts with the lowest transcript Ensembl ID.

	This version adds a few new options to the pvacseq
generate_protein_fasta command:

	The --mutant-only option can be used to only output mutant peptide
sequences instead of mutant and wildtype sequences.

	This command now has an option to provide a pVACseq all_eptiopes or
filtered TSV file as an input (--input-tsv). This will limit the
output fasta to only sequences that originated from the variants in that file.

	This release adds a pvacfuse generate_protein_fasta command that works
similarly to the pvacseq generate_protein_fasta command but works with
Integrate-NEO or AGFusion input files.

	We removed the sorting of the all_epitopes result file in order to reduce
memory usage. Only the filtered files will be sorted. This version also updates the sorting algorithm of the
filtered files as follows:

	If the --top-score-metric is set to median the results are first
sorted by the Median MT Score. If multiple epitopes have the same
Median MT Score they are then sorted by the Corresponding Fold
Change. The last sorting criteria is the Best MT Score.

	If the --top-score-metric is set to lowest the results are first
sorted by the Best MT Score. If multiple epitopes have the same
Best MT Score they are then sorted by the Corresponding Fold
Change. The last sorting criteria is the Median MT Score.

	pVACseq, pVACfuse, and pVACbind now calculate manufacturability metrics
for the predicted epitopes. Manufacturability metrics are also
calculated for all protein sequences when running the pvacseq generate_protein_fasta
and pvacfuse generate_protein_fasta commands. They are saved in the .manufacturability.tsv
along to the result fasta.

	The pVACseq score that gets calculated for epitopes in the condensed report
is now converted into a rank. This will hopefully remove any confusion about
whether the previous score could be treated as an absolute measure of
immunogencity, which it was not intended for. Converting this score to a
rank ensures that it gets treated in isolation for only the epitopes in the
condensed file.

	The condensed report now also outputs the mutation position as well as the
full set of lowest and median wildtype and mutant scores.

	This version adds a clear cache function to pVACapi that can be called by
running pvacapi clear_cache. Sometimes pVACapi can get into a state
where the cache file contains conflicting data compared to the actual
process outputs which results in errors. Clearing the cache using the pvacapi clear_cache
function can be used in that situation to resolve these errors.

Past release notes can be found on our Release Notes page.

To stay up-to-date on the latest pVACtools releases please join our Mailing List.

Citations

Jasreet Hundal , Susanna Kiwala , Joshua McMichael, Chris Miller, Huiming Xia,
Alex Wollam, Conner Liu, Sidi Zhao, Yang-Yang Feng, Aaron Graubert, Amber Wollam,
Jonas Neichin, Megan Neveau, Jason Walker, William Gillanders,
Elaine Mardis, Obi Griffith, Malachi Griffith. pVACtools: A Computational Toolkit to
Identify and Visualize Cancer Neoantigens. Cancer Immunology Research.
2020 Mar;8(3):409-420. doi: 10.1158/2326-6066.CIR-19-0401.
PMID: 31907209 [https://www.ncbi.nlm.nih.gov/pubmed/31907209].

Jasreet Hundal, Susanna Kiwala, Yang-Yang Feng, Connor J. Liu, Ramaswamy Govindan, William C. Chapman,
Ravindra Uppaluri, S. Joshua Swamidass, Obi L. Griffith, Elaine R. Mardis, and Malachi Griffith.
Accounting for proximal variants improves neoantigen prediction [https://www.nature.com/articles/s41588-018-0283-9].
Nature Genetics. 2018, DOI: 10.1038/s41588-018-0283-9. PMID: 30510237 [https://www.ncbi.nlm.nih.gov/pubmed/30510237].

Jasreet Hundal, Beatriz M. Carreno, Allegra A. Petti, Gerald P. Linette, Obi
L. Griffith, Elaine R. Mardis, and Malachi Griffith. pVACseq: A genome-guided
in silico approach to identifying tumor neoantigens [http://www.genomemedicine.com/content/8/1/11]. Genome Medicine. 2016,
8:11, DOI: 10.1186/s13073-016-0264-5. PMID: 26825632 [http://www.ncbi.nlm.nih.gov/pubmed/26825632].

Source code

The pVACtools source code is available in GitHub [https://github.com/griffithlab/pVACtools].

License

This project is licensed under NPOSL-3.0 [http://opensource.org/licenses/NPOSL-3.0].

 [image: pVACseq logo]

pVACseq

pVACseq is a cancer immunotherapy pipeline for the identification of personalized Variant Antigens by Cancer Sequencing (pVACseq) that integrates tumor mutation and expression data (DNA- and RNA-Seq). It enables cancer immunotherapy research by using massively parallel sequence data to predicting tumor-specific mutant peptides (neoantigens) that can elicit anti-tumor T cell immunity. It is being used in studies of checkpoint therapy response and to identify targets for personalized cancer vaccines and adoptive T cell therapies. For more general information, see the manuscript published in Genome Medicine [http://www.genomemedicine.com/content/8/1/11].

	Features

	Input File Preparation
	Annotating your VCF with VEP

	Adding coverage data to your VCF

	Adding expression data to your VCF

	Creating a phased VCF of proximal variants

	Getting Started
	Running pVACseq using Docker

	Usage

	Output Files
	all_epitopes.tsv and filtered.tsv Report Columns

	filtered.condensed.ranked.tsv Report Columns

	Filtering Commands
	Binding Filter

	Coverage Filter

	Transcript Support Level Filter

	Top Score Filter

	Additional Commands
	Download Example Data

	Install VEP Plugin

	List Valid Alleles

	List Allele-Specific Cutoffs

	Optional Downstream Analysis Tools
	Generate Protein Fasta

	Generate Condensed, Ranked Report

	Common Errors
	Input VCF Sample Information

	Input VCF Compression and Indexing

	Input VCF VEP Annotation

	Other

	Frequently Asked Questions

 [image: pVACseq logo]

Features

SNV and Indel support

pVACseq offers epitope binding predictions for missense, in-frame insertion, in-frame deletion, protein-altering, and frameshift mutations.

VCF support

pVACseq uses a VCF file as its input. This VCF file must contain sample genotype information and be annotated with the Ensembl Variant Effect Predictor (VEP). See the Input File Preparation section for more information.

No local install of epitope prediction software needed

pVACseq utilizes the IEDB RESTful web interface. This means that none of the underlying prediction software, like NetMHC, needs to be installed locally.

Warning

We only recommend using the RESTful API for small requests. If you use the
RESTful API to process large VCFs or to make predictions for many alleles,
epitope lengths, or prediction algorithms, you might overload their system.
This can result in the blacklisting of your IP address by IEDB, causing
403 errors when trying to use the RESTful API. In that case please open
a ticket with IEDB support [http://help.iedb.org/] to have your IP
address removed from the IEDB blacklist.

Support for local installation of the IEDB Analysis Resources

pVACseq provides the option of using a local installation of the IEDB MHC
class I [http://tools.iedb.org/mhci/download/] and class II [http://tools.iedb.org/mhcii/download/]
binding prediction tools.

Warning

Using a local IEDB installation is strongly recommended for larger datasets
or when the making predictions for many alleles, epitope lengths, or
prediction algorithms. More information on how to install IEDB locally can
be found on the Installation page (note: the pvactools
docker image now contains IEDB).

MHC Class I and Class II predictions

Both MHC Class I and Class II predictions are supported. Simply choose the desired prediction algorithms and HLA alleles during processing and Class I and Class II prediction results will be written to their own respective subdirectories in your output directory.

By using the IEDB RESTful web interface, pVACseq leverages their extensive support of different prediction algorithms.

In addition to IEDB-supported prediction algorithms, we’ve also added support
for MHCflurry [http://www.biorxiv.org/content/early/2017/08/09/174243] and
MHCnuggets [http://karchinlab.org/apps/appMHCnuggets.html].

	MHC Class I Prediction Algorithm

	Version

	NetMHCpan

	4.0

	NetMHC

	4.0

	NetMHCcons

	1.1

	PickPocket

	1.1

	SMM

	1.0

	SMMPMBEC

	1.0

	MHCflurry

	

	MHCnuggets

	

	MHC Class II Prediction Algorithm

	Version

	NetMHCIIpan

	3.2

	SMMalign

	1.1

	NNalign

	2.3

	MHCnuggets

	

Comprehensive filtering

Automatic filtering on the binding affinity ic50 (nm) value narrows down the results to only include
“good” candidate peptides. The binding filter threshold can be adjusted by the user for each
pVACseq run. pVACseq also support the option of filtering on allele-specific binding thresholds
as recommended by IEDB [https://help.iedb.org/hc/en-us/articles/114094151811-Selecting-thresholds-cut-offs-for-MHC-class-I-and-II-binding-predictions].
Additional filtering on the binding affitinity can be manually done by the user by running the
standalone binding filter on the filtered result file
to narrow down the candidate epitopes even further or on the unfiltered
all_epitopes file to apply different cutoffs.

Readcount and expression data are extracted from an annotated VCF to automatically filter with
adjustable thresholds on depth, VAF, and/or expression values. The user can also manually run
the standalone coverage filter to further narrow down their results
from the filtered output file.

If the input VCF is annotated with Ensembl transcript support levels (TSLs), pVACseq will
filter on the transcript support level to only keep high-confidence
transcripts of level 1. This filter can also be run standalone.

As a last filtering step, pVACseq applies the top score filter to only keep the top scoring epitope
for each variant. As with all previous filters, this filter can also be run
standalone.

Ranking of candidate neoepitopes

Filtered neoepitopes are ranked based on the binding affinity,
fold change between mutant and wildtype binding affinity (agretopicity), gene expression, RNA
and DNA VAF.

Incorporation of proximal germline and somatic variants

To incorporate proximal variants into the neoepitope predictions, users can provide
a phased VCF of proximal variants as an input to their pVACseq runs.
This VCF is then used to incorporate amino acid changes of nearby variants that are in-phase
with a somatic variant of interest. This results in corrected mutant and wildtype
protein sequences that account for proximal variants when MHC binding predictions are performed.

NetChop and NetMHCstab integration

Cleavage position predictions are added with optional processing through NetChop.

Stability predictions can be added if desired by the user. These predictions are obtained via NetMHCstabpan.

 [image: pVACseq logo]

Input File Preparation

The main input file to the pVACseq pipeline is a VCF file. The VCF needs to
contain sample genotype information (GT field). The VCF needs to be annotated
with VEP to add transcript information.

If filtering on variant allele fractions (VAFs), depth, and expression values is
desired, the VCF also needs to be annotated with this data.

Refer to the following sections for instructions on how to annotate your VCF with
these data and how to produce a VCF for proximal variant analysis.

	Annotating your VCF with VEP

	Adding coverage data to your VCF

	Adding expression data to your VCF

	Creating a phased VCF of proximal variants

 [image: pVACseq logo]

Annotating your VCF with VEP

The input to the pVACseq pipeline is a VEP-annotated VCF. This will add
consequence, transcript, and gene information to your VCF.

Installing VEP

	To download and install the VEP command line tool follow the VEP installation instructions [http://useast.ensembl.org/info/docs/tools/vep/script/index.html].

	We recommend the use of the VEP cache for your annotation. The VEP cache
can be downloaded following these VEP cache installation instructions [http://useast.ensembl.org/info/docs/tools/vep/script/vep_cache.html#cache].
Please ensure that the Ensembl cache version matches the reference build
and Ensembl version used in other parts of your analysis (e.g. for RNA-seq
gene/transcript abundance estimation).

	Download the VEP plugins from the GitHub repository [https://github.com/Ensembl/VEP_plugins]
by cloning the repository:

git clone https://github.com/Ensembl/VEP_plugins.git

	Copy the Wildtype plugin provided with the
pVACseq package to the folder with the other VEP plugins by running the following command:

pvacseq install_vep_plugin <VEP plugins directory>

Running VEP

Example VEP Command

./vep \
--input_file <input VCF> --output_file <output VCF> \
--format vcf --vcf --symbol --terms SO --tsl\
--hgvs --fasta <reference build FASTA file location> \
--offline --cache [--dir_cache <VEP cache directory>] \
--plugin Downstream --plugin Wildtype \
[--dir_plugins <VEP_plugins directory>] [--pick] [--transcript_version]

Required VEP Options

--format vcf
--vcf
--symbol
--terms SO
--tsl
--hgvs
--fasta <reference build FASTA location>
--offline
--cache
--plugin Downstream
--plugin Wildtype

	The --format vcf option specifies that the input file is in VCF format.

	The --vcf option will result in the output being written in VCF format.

	The --symbol option will include gene symbol in the annotation.

	The --terms SO option will result in Sequence Ontology terms being used
for the consequences.

	The --tsl option adds transcript support level information to the
annotation.

	The --hgvs option will result in HGVS identifiers being added to the
annotation.

	Using the --hgvs option requires the usage of the --fasta argument to
specify the location of the reference genome build FASTA file.

	The --offline option will eliminate all network connections for speed
and/or privacy.

	The --cache option will result in the VEP cache being used for
annotation.

	The --plugin Downstream option will run the Downstream plugin which will
compute the downstream protein sequence after a frameshift.

	The --plugin Wildtype option will run the Wildtype plugin which will
include the transcript protein sequence in the annotation.

Useful VEP Options

--dir_cache <VEP cache directory>
--dir_plugins <VEP_plugins directory>
--pick
--transcript_version

	The --dir_cache <VEP cache directory> option may be needed if the VEP
cache was downloaded to a different location than the default. The default
location of the VEP cache is at $HOME/.vep.

	The --dir_plugins <VEP_plugins directory> option may need to be set
depending on where the VEP_plugins were installed to.

	The --pick option might be useful to limit the annotation to the “top”
transcript for each variant (the one for which the most dramatic consequence
is predicted). Otherwise, VEP will annotate each variant with all possible
transcripts. pVACseq will provide predictions for all transcripts in the VEP
CSQ field. Running VEP without the --pick option can therefore drastically
increase the runtime of pVACseq.

	The --transcript_version option will add the transcript version to the
transcript identifiers. This option might be needed if you intend to
annotate your VCF with expression information. Particularly if your
expression estimation tool uses versioned transcript identifiers (e.g.
ENST00000256474.2).

Additional VEP options that might be desired can be found
here [http://useast.ensembl.org/info/docs/tools/vep/script/vep_options.html].

 [image: pVACseq logo]

Adding coverage data to your VCF

pVACseq is able to parse coverage information directly from the
VCF. The expected annotation format is outlined below.

	Type

	VCF Sample

	Format Fields

	Tumor DNA Coverage

	single-sample VCF or sample_name

	AD, DP, and AF

	Tumor RNA Coverage

	single-sample VCF or sample_name

	RAD, RDP, and RAF

	Normal DNA Coverage

	--normal-sample-name

	AD, DP, and AF

Tumor DNA Coverage

If the VCF is a single-sample VCF, pVACseq assumes that this sample is the
tumor sample. If the VCF is a multi-sample VCF, pVACseq will look for the
sample using the sample_name parameter and treat that sample as the tumor
sample.

For this tumor sample, the tumor DNA depth is determined from the DP format field.
The tumor DNA VAF is determined from the AF field. If the VCF does not contain a
AF format field, the tumor DNA VAF is calculated from the AD and DP fields
by dividing the allele count by the total read depth.

Tumor RNA Coverage

If the VCF is a single-sample VCF, pVACseq assumes that this sample is the
tumor sample. If the VCF is a multi-sample VCF, pVACseq will look for the
sample using the sample_name parameter and treat that sample as the tumor
sample.

For this tumor sample, the tumor RNA depth is determined from the RDP format field.
The tumor RNA VAF is determined from the RAF field. If the VCF does not contain a
RAF format field, the tumor RNA VAF is calculated from the RAD and RDP fields
by dividing the allele count by the total read depth.

Normal DNA Coverage

To parse normal DNA coverage information, the input VCF to pVACseq will need to be a
multi-sample (tumor/normal) VCF, with one sample being the tumor sample, and the other
the matched normal sample. The tumor sample is identified by the
sample_name parameter while the normal sample can be specified with
--normal-sample-name option.

For this normal sample, the normal DNA depth is determined from the DP format field.
The normal DNA VAF is determined from the AF field. If the VCF does not contain a
AF format field, the normal DNA VAF is calculated from the AD and DP fields
by dividing the allele count by the total read depth.

Using the vcf-readcount-annotator to add coverage information to your VCF

Some variant callers will already have added coverage information to your VCF.
However, if your VCF doesn’t contain coverage information or if you need to
add coverage information for additional samples or for RNA-seq data, you can
use the vcf-readcount-annotator to do so. The vcf-readcount-annotator
will take the output from bam-readcount [https://github.com/genome/bam-readcount#build-instructions] and use it to
add readcounts to your VCF.

bam-readcount needs to be run separately for snvs and indels so it is
recommended to first split multi-allelic sites by using a tool such as vt
decompose.

Installing vt

The vt tool suite can be installed by following the instructions on their
page [https://genome.sph.umich.edu/wiki/Vt#Installation].

Installing bam-readcount

The vcf-readcount-annotator will add readcount information from bam-readcount
output files to your VCF. Therefore, you will first need to run bam-readcount
to obtain a file of readcounts for your variants.

Follow the installation instructions on the
bam-readcount GitHub page [https://github.com/genome/bam-readcount#build-instructions].

Installing the vcf-readcount-annotator

The vcf-readcount-annotator is part of the vcf-annotation-tools package.
Please visit vatools.org [http://vatools.org] for more details on this package.
You can install this package by running:

pip install vcf-annotation-tools

Running vt decompose

Example vt decompose command

vt decompose -s <input_vcf> -o <decomposed_vcf>

Running bam-readcount

bam-readcount uses a bam file and site list regions file as input. The site lists are
created from your decomposed VCF, one for snvs and one for indels. Snvs and
indels are then run separately through bam-readcount using the same bam. Indel regions
must be run in a special insertion-centric mode.

Example bam-readcount command

bam-readcount -f <reference_fasta> -l <site_list> <bam_file> [-i] [-b 20]

The -i option must be used when running the indels site list in order to process indels in
insertion-centric mode.

A minimum base quality of 20 is recommended which can be enabled using the -b 20
option.

The mgibio/bam_readcount_helper-cwl Docker container contains a
bam_readcount_helper.py script that will create the snv and indel site list files
from a VCF and run bam-readcount. Information on that Docker container can be found here:
dockerhub mgibio/bam_readcount_helper-cwl [https://hub.docker.com/r/mgibio/bam_readcount_helper-cwl].

Example bam_readcount_helper.py command

/usr/bin/python /usr/bin/bam_readcount_helper.py \
<decomposed_vcf> <sample_name> <reference_fasta> <bam_file> <output_dir>

This will write two bam-readcount files to the <output_dir>:
<sample_name>_bam_readcount_snv.tsv and
<sample_name>_bam_readcount_indel.tsv, containing readcounts for the snv
and indel positions, respectively.

Running the vcf-readcount-annotator

The readcounts for snvs and indels are then added to your VCF separately, by
running the vcf-readcount-annotator twice.

Example vcf-readcount-annotator commands

vcf-readcount-annotator <decomposed_vcf> <snv_bam_readcount_file> <DNA|RNA> \
-s <sample_name> -t snv -o <snv_annotated_vcf>

vcf-readcount-annotator <snv_annotated_vcf> <indel_bam_readcount_file> <DNA|RNA> \
-s <sample_name> -t indel -o <annotated_vcf>

The data type DNA or RNA identifies whether you are annotating DNA or RNA
readcount. DNA readcount annotations will be written to the AD/DP/AF
format fields while RNA readcount annotations will be written to the
RAD/RDP/RAF format fields. Please see the VAtools documentation [https://vcf-annotation-tools.readthedocs.io/en/latest/vcf_readcount_annotator.html]
for more information.

 [image: pVACseq logo]

Adding expression data to your VCF

pVACseq is able to parse coverage and expression information directly from the
VCF. The expected annotation format is outlined below.

	Type

	VCF Sample

	Format Fields

	Transcript Expression

	single-sample VCF or sample_name

	TX

	Gene Expression

	single-sample VCF or sample_name

	GX

Transcript Expression

If the VCF is a single-sample VCF, pVACseq assumes that this sample is the
tumor sample. If the VCF is a multi-sample VCF, pVACseq will look for the
sample using the sample_name parameter and treat that sample as the tumor
sample.

For this tumor sample the transcript expression is determined from the TX
format field. The TX format field is a comma-separated list of
per-transcript expression values, where each individual transcript expression
is listed as expression_id|expression_value, e.g.
ENST00000215794|2.35912,ENST00000215795|0.2. The expression_id needs
to match the Feature field of the VEP CSQ annotation. In other words,
your expression abundance estimation should have been performed with the same transcript
annotation version that you used to annotate your variants with VEP (e.g. Ensembl v95).

Gene Expression

If the VCF is a single-sample VCF, pVACseq assumes that this sample is the
tumor sample. If the VCF is a multi-sample VCF, pVACseq will look for the
sample using the sample_name parameter and treat that sample as the tumor
sample.

For this tumor sample the gene expression is determined from the GX
format field. The GX format field is a comma-separated list of
per-gene expression values, where each individual gene expression
is listed as gene_id|expression_value, e.g.
ENSG00000184979|2.35912. The gene_id needs to match the Gene field
of the VEP CSQ annotation.

Using the vcf-expression-annotator to add expression information to your VCF

The vcf-expression-annotator will add expression information to your VCF.
It will accept expression data from various tools. Currently it supports
Cufflinks, Kallisto, StringTie, as well as a custom option for any
tab-delimited file.

Installing the vcf-expression-annotator

The vcf-expression-annotator is part of the vcf-annotation-tools package (vatools.org [http://vatools.org]).
You can install this package by running:

pip install vcf-annotation-tools

Running the vcf-expression-annotator

You can now use the output file from your expression caller to add expression information to
your VCF:

vcf-expression-annotator input_vcf expression_file kallisto|stringtie|cufflinks|custom gene|transcript

The data type gene or transcript identifies whether you are annotating
transcript or gene expression data. Transcript expression annotations will be
written to the TX format field while gene expression annotations will be
written to the GX format field. Please see the VAtools documentation [https://vcf-annotation-tools.readthedocs.io/en/latest/vcf_readcount_annotator.html]
for more information.

 [image: pVACseq logo]

Creating a phased VCF of proximal variants

By default, pVACseq will evaluate all somatic variants in the input VCF in
isolation. As a result, if a somatic variant of interest has other somatic
or germline variants in proximity, the calculated wildtype and mutant protein
sequences might be incorrect because the amino acid changes of those proximal
variants were not taken into account.

To solve this problem, we added a new option to pVACseq in the pvactools
release 1.1. This option, --phased-proximal-variants-vcf, can be
used to provide the path to a phased VCF of proximal variants in addition to
the normal input VCF. This VCF is then used to incorporate amino acid changes of nearby
variants that are in-phase to a somatic variant of interest. This results in
corrected mutant and wildtype protein sequences that account for proximal
variants.

At this time, this option only handles missense proximal variants but we are
working on a more comprehensive approach to this problem.

Note that if you do not perform the proximal variants step, you should manually
review the sequence data for all candidates (e.g. in IGV) for proximal variants
and either account for these manually, or eliminate these candidates. Failure to
do so may lead to inclusion of incorrect peptide sequences.

How to create the phased VCF of proximal variants

Input files

	tumor.bam: A BAM file of tumor reads

	somatic.vcf: A VCF of somatic variants

	germline.vcf: A VCF of germline variants

	reference.fa: The reference FASTA file

Required tools

	Picard [https://broadinstitute.github.io/picard/]

	GATK [https://software.broadinstitute.org/gatk/]

	bgzip [http://www.htslib.org/doc/bgzip.html]

	tabix [http://www.htslib.org/doc/tabix.html]

Create the reference dictionary

java -jar picard.jar CreateSequenceDictionary \
R=reference.fa \
O=reference.dict

Update sample names

The sample names in the tumor.bam, the somatic.vcf, and the
germline.vcf need to match. If they don’t you need to edit the sample names
in the VCF files to match the tumor BAM file.

Combine somatic and germline variants using GATK’s CombineVariants

/usr/bin/java -Xmx16g -jar /opt/GenomeAnalysisTK.jar \
-T CombineVariants \
-R reference.fa \
--variant germline.vcf \
--variant somatic.vcf \
-o combined_somatic_plus_germline.vcf \
--assumeIdenticalSamples

Sort combined VCF using Picard

/usr/bin/java -Xmx16g -jar /opt/picard/picard.jar SortVcf \
I=combined_somatic_plus_germline.vcf \
O=combined_somatic_plus_germline.sorted.vcf \
SEQUENCE_DICTIONARY=reference.dict

Phase variants using GATK’s ReadBackedPhasing

/usr/bin/java -Xmx16g -jar /opt/GenomeAnalysisTK.jar \
-T ReadBackedPhasing \
-R reference.fa \
-I tumor.bam \
--variant combined_somatic_plus_germline.sorted.vcf \
-L combined_somatic_plus_germline.sorted.vcf \
-o phased.vcf

bgzip and index the phased VCF

bgzip -c phased.vcf > phased.vcf.gz
tabix -p vcf phased.vcf.gz

The resulting phased.vcf.gz file can be used as the input to the
--phased-proximal-variants-vcf option.

bgzip and index the input VCF

In order to use the --phased-proximal-variants-vcf option you will also
need to bgzip and index your main input VCF.

bgzip -c input.vcf > input.vcf.gz
tabix -p vcf input.vcf.gz

 [image: pVACseq logo]

Getting Started

pVACseq provides a set of example data to show the expected input and output files. You can download the data set by running the pvacseq download_example_data command.

The example data output can be reproduced by running the following command:

pvacseq run \
<example_data_dir>/input.vcf \
Test \
HLA-A*02:01,HLA-B*35:01,DRB1*11:01 \
MHCflurry MHCnuggetsI MHCnuggetsII NNalign NetMHC PickPocket SMM SMMPMBEC SMMalign \
<output_dir> \
-e 8,9,10

A detailed description of all command options can be found on the Usage page.

Running pVACseq using Docker

A pVACtools Docker image is available on DockerHub [https://hub.docker.com/r/griffithlab/pvactools] using the
griffitlab/pvactools tag. After installing Docker [https://docs.docker.com/install/]
you can start an interactive Docker instance by running the following command:

docker run -it griffithlab/pvactools

Version-specific images are available and can be run like so:

docker run -it griffithlab/pvactools:<version>

In order to have access to your local data inside of the Docker container you
will need to mount a local volume inside of the container. This is done using
the -v flag. For example, you can mount your
/local/path/to/example_data_dir in your container like so:

docker run -v /local/path/to/example_data_dir:/pvactools_example_data -it griffithlab/pvactools

This will mount the example_data_dir inside the container as the
/pvacseq_example_data directory. When you are inside of the container
you will now have access to all of the data that was inside of the
example_data_dir from the /pvaseq_example_data directory.

You will need to do the same thing for your /local/path/to/output_dir so that any output
written by pVACseq will be accessible from your machine outside of your Docker
container.

docker run -v /local/path/to/example_data_dir:/pvacseq_example_data -v /local/path/to/output_dir:/pvacseq_output_data -it griffithlab/pvactools

You can now run your pVACseq command like so:

pvacseq run \
/pvacseq_example_data/input.vcf \
Test \
HLA-A*02:01,HLA-B*35:01,DRB1*11:01 \
MHCflurry MHCnuggetsI MHCnuggetsII NNalign NetMHC PickPocket SMM SMMPMBEC SMMalign \
/pvacseq_output_data \
-e 8,9,10
--iedb-install-directory /opt/iedb

The output from your pVACseq run can be found under /pvacseq_output_data
inside of the container and /local/path/to/output_dir on your local
machine.

Please note that our Docker container already includes installations of the IEDB class I and class II tools at /opt/iedb (--iedb-install-directory /opt/iedb).

 [image: pVACseq logo]

Usage

Warning

Using a local IEDB installation is strongly recommended for larger datasets
or when the making predictions for many alleles, epitope lengths, or
prediction algorithms. More information on how to install IEDB locally can
be found on the Installation page.

usage: pvacseq run [-h] [-e EPITOPE_LENGTH]
 [--iedb-install-directory IEDB_INSTALL_DIRECTORY]
 [-b BINDING_THRESHOLD]
 [--allele-specific-binding-thresholds] [-m {lowest,median}]
 [-r IEDB_RETRIES] [-k] [-t N_THREADS]
 [--net-chop-method {cterm,20s}] [--netmhc-stab]
 [--net-chop-threshold NET_CHOP_THRESHOLD]
 [-a {sample_name}] [-s FASTA_SIZE] [--exclude-NAs]
 [-l PEPTIDE_SEQUENCE_LENGTH]
 [-d DOWNSTREAM_SEQUENCE_LENGTH]
 [--normal-sample-name NORMAL_SAMPLE_NAME]
 [-p PHASED_PROXIMAL_VARIANTS_VCF] [-c MINIMUM_FOLD_CHANGE]
 [--normal-cov NORMAL_COV] [--tdna-cov TDNA_COV]
 [--trna-cov TRNA_COV] [--normal-vaf NORMAL_VAF]
 [--tdna-vaf TDNA_VAF] [--trna-vaf TRNA_VAF]
 [--expn-val EXPN_VAL]
 [--maximum-transcript-support-level {1,2,3,4,5}]
 [--pass-only]
 input_file sample_name allele
 {MHCflurry,MHCnuggetsI,MHCnuggetsII,NNalign,NetMHC,NetMHCIIpan,NetMHCcons,NetMHCpan,PickPocket,SMM,SMMPMBEC,SMMalign}
 [{MHCflurry,MHCnuggetsI,MHCnuggetsII,NNalign,NetMHC,NetMHCIIpan,NetMHCcons,NetMHCpan,PickPocket,SMM,SMMPMBEC,SMMalign} ...]
 output_dir

positional arguments:
 input_file A VEP-annotated single- or multi-sample VCF containing
 genotype, transcript, Wildtype protein sequence, and
 Downstream protein sequence information.The VCF may be
 gzipped (requires tabix index).
 sample_name The name of the tumor sample being processed. When
 processing a multi-sample VCF the sample name must be
 a sample ID in the input VCF #CHROM header line.
 allele Name of the allele to use for epitope prediction.
 Multiple alleles can be specified using a comma-
 separated list. For a list of available alleles, use:
 `pvacseq valid_alleles`.
 {MHCflurry,MHCnuggetsI,MHCnuggetsII,NNalign,NetMHC,NetMHCIIpan,NetMHCcons,NetMHCpan,PickPocket,SMM,SMMPMBEC,SMMalign}
 The epitope prediction algorithms to use. Multiple
 prediction algorithms can be specified, separated by
 spaces.
 output_dir The directory for writing all result files.

optional arguments:
 -h, --help show this help message and exit
 -e EPITOPE_LENGTH, --epitope-length EPITOPE_LENGTH
 Length of subpeptides (neoepitopes) to predict.
 Multiple epitope lengths can be specified using a
 comma-separated list. Typical epitope lengths vary
 between 8-11. Required for Class I prediction
 algorithms. (default: None)
 --iedb-install-directory IEDB_INSTALL_DIRECTORY
 Directory that contains the local installation of IEDB
 MHC I and/or MHC II. (default: None)
 -b BINDING_THRESHOLD, --binding-threshold BINDING_THRESHOLD
 Report only epitopes where the mutant allele has ic50
 binding scores below this value. (default: 500)
 --allele-specific-binding-thresholds
 Use allele-specific binding thresholds. To print the
 allele-specific binding thresholds run `pvacseq
 allele_specific_cutoffs`. If an allele does not have a
 special threshold value, the `--binding-threshold`
 value will be used. (default: False)
 -m {lowest,median}, --top-score-metric {lowest,median}
 The ic50 scoring metric to use when filtering epitopes
 by binding-threshold or minimum fold change. lowest:
 Use the best MT Score and Corresponding Fold Change
 (i.e. the lowest MT ic50 binding score and
 corresponding fold change of all chosen prediction
 methods). median: Use the median MT Score and Median
 Fold Change (i.e. the median MT ic50 binding score and
 fold change of all chosen prediction methods).
 (default: median)
 -r IEDB_RETRIES, --iedb-retries IEDB_RETRIES
 Number of retries when making requests to the IEDB
 RESTful web interface. Must be less than or equal to
 100. (default: 5)
 -k, --keep-tmp-files Keep intermediate output files. This might be useful
 for debugging purposes. (default: False)
 -t N_THREADS, --n-threads N_THREADS
 Number of threads to use for parallelizing peptide-MHC
 binding prediction calls. (default: 1)
 --net-chop-method {cterm,20s}
 NetChop prediction method to use ("cterm" for C term
 3.0, "20s" for 20S 3.0). C-term 3.0 is trained with
 publicly available MHC class I ligands and the authors
 believe that is performs best in predicting the
 boundaries of CTL epitopes. 20S is trained with in
 vitro degradation data. (default: None)
 --netmhc-stab Run NetMHCStabPan after all filtering and add
 stability predictions to predicted epitopes. (default:
 False)
 --net-chop-threshold NET_CHOP_THRESHOLD
 NetChop prediction threshold (increasing the threshold
 results in better specificity, but worse sensitivity).
 (default: 0.5)
 -a {sample_name}, --additional-report-columns {sample_name}
 Additional columns to output in the final report. If
 sample_name is chosen, this will add a column with the
 sample name in every row of the output. This can be
 useful if you later want to concatenate results from
 multiple individuals into a single file. (default:
 None)
 -s FASTA_SIZE, --fasta-size FASTA_SIZE
 Number of FASTA entries per IEDB request. For some
 resource-intensive prediction algorithms like
 Pickpocket and NetMHCpan it might be helpful to reduce
 this number. Needs to be an even number. (default:
 200)
 --exclude-NAs Exclude NA values from the filtered output. (default:
 False)
 -l PEPTIDE_SEQUENCE_LENGTH, --peptide-sequence-length PEPTIDE_SEQUENCE_LENGTH
 Length of the peptide sequence to use when creating
 the FASTA. (default: 21)
 -d DOWNSTREAM_SEQUENCE_LENGTH, --downstream-sequence-length DOWNSTREAM_SEQUENCE_LENGTH
 Cap to limit the downstream sequence length for
 frameshifts when creating the FASTA file. Use 'full'
 to include the full downstream sequence. (default:
 1000)
 --normal-sample-name NORMAL_SAMPLE_NAME
 In a multi-sample VCF, the name of the matched normal
 sample. (default: None)
 -p PHASED_PROXIMAL_VARIANTS_VCF, --phased-proximal-variants-vcf PHASED_PROXIMAL_VARIANTS_VCF
 A VCF with phased proximal variant information. Must
 be gzipped and tabix indexed. (default: None)
 -c MINIMUM_FOLD_CHANGE, --minimum-fold-change MINIMUM_FOLD_CHANGE
 Minimum fold change between mutant (MT) binding score
 and wild-type (WT) score (fold change = WT/MT). The
 default is 0, which filters no results, but 1 is often
 a sensible choice (requiring that binding is better to
 the MT than WT peptide). This fold change is sometimes
 referred to as a differential agretopicity index.
 (default: 0.0)
 --normal-cov NORMAL_COV
 Normal Coverage Cutoff. Only sites above this read
 depth cutoff will be considered. (default: 5)
 --tdna-cov TDNA_COV Tumor DNA Coverage Cutoff. Only sites above this read
 depth cutoff will be considered. (default: 10)
 --trna-cov TRNA_COV Tumor RNA Coverage Cutoff. Only sites above this read
 depth cutoff will be considered. (default: 10)
 --normal-vaf NORMAL_VAF
 Normal VAF Cutoff. Only sites BELOW this cutoff in
 normal will be considered. (default: 0.02)
 --tdna-vaf TDNA_VAF Tumor DNA VAF Cutoff. Only sites above this cutoff
 will be considered. (default: 0.25)
 --trna-vaf TRNA_VAF Tumor RNA VAF Cutoff. Only sites above this cutoff
 will be considered. (default: 0.25)
 --expn-val EXPN_VAL Gene and Transcript Expression cutoff. Only sites
 above this cutoff will be considered. (default: 1.0)
 --maximum-transcript-support-level {1,2,3,4,5}
 The threshold to use for filtering epitopes on the
 Ensembl transcript support level (TSL). Keep all
 epitopes with a transcript support level <= to this
 cutoff. (default: 1)
 --pass-only Only process VCF entries with a PASS status. (default:
 False)

 [image: pVACseq logo]

Output Files

The pVACseq pipeline will write its results in separate folders depending on
which prediction algorithms were chosen:

	MHC_Class_I: for MHC class I prediction algorithms

	MHC_Class_II: for MHC class II prediction algorithms

	combined: If both MHC class I and MHC class II prediction algorithms were run, this folder combines the neoeptiope predictions from both

Each folder will contain the same list of output files (listed in the order
created):

	File Name

	Description

	<sample_name>.tsv

	An intermediate file with variant, transcript, coverage, vaf, and expression
information parsed from the input files.

	<sample_name>.tsv_<chunks> (multiple)

	The above file but split into smaller chunks for easier processing with IEDB.

	<sample_name>.all_epitopes.tsv

	A list of all predicted epitopes and their binding affinity scores, with
additional variant information from the <sample_name>.tsv.

	<sample_name>.filtered.tsv

	The above file after applying all filters, with cleavage site and stability
predictions added.

	<sample_name>.filtered.condensed.ranked.tsv

	A condensed version of the filtered TSV with only the most important columns
remaining, with a priority score for each neoepitope candidate added.

all_epitopes.tsv and filtered.tsv Report Columns

	Column Name

	Description

	Chromosome

	The chromosome of this variant

	Start

	The start position of this variant in the zero-based, half-open coordinate system

	Stop

	The stop position of this variant in the zero-based, half-open coordinate system

	Reference

	The reference allele

	Variant

	The alt allele

	Transcript

	The Ensembl ID of the affected transcript

	Transcript Support Level

	The transcript support level (TSL) [https://useast.ensembl.org/info/genome/genebuild/transcript_quality_tags.html#tsl]
of the affected transcript. NA if the VCF entry doesn’t contain TSL information.

	Ensembl Gene ID

	The Ensembl ID of the affected gene

	Variant Type

	The type of variant. missense for missense mutations, inframe_ins for
inframe insertions, inframe_del for inframe deletions, and FS for frameshift variants

	Mutation

	The amnio acid change of this mutation

	Protein Position

	The protein position of the mutation

	Gene Name

	The Ensembl gene name of the affected gene

	HGVSc

	The HGVS coding sequence variant name

	HGVSp

	The HGVS protein sequence variant name

	HLA Allele

	The HLA allele for this prediction

	Peptide Length

	The peptide length of the epitope

	Sub-peptide Position

	The one-based position of the epitope within the protein sequence used to make the prediction

	Mutation Position

	The one-based position of the start of the mutation within the epitope sequence. 0 if the
start of the mutation is before the epitope

	MT Epitope Seq

	The mutant epitope sequence

	WT Epitope Seq

	The wildtype (reference) epitope sequence at the same position in the full protein sequence. NA if there is no wildtype sequence at this position or if more than half of the amino acids of the mutant epitope are mutated

	Best MT Score Method

	Prediction algorithm with the lowest mutant ic50 binding affinity for this epitope

	Best MT Score

	Lowest ic50 binding affinity of all prediction algorithms used

	Corresponding WT Score

	ic50 binding affinity of the wildtype epitope. NA if there is no WT Epitope Seq.

	Corresponding Fold Change

	Corresponding WT Score / Best MT Score. NA if there is no WT Epitope Seq.

	Tumor DNA Depth

	Tumor DNA depth at this position. NA if VCF entry does not contain tumor DNA readcount annotation.

	Tumor DNA VAF

	Tumor DNA variant allele frequency (VAF) at this position. NA if VCF entry does not contain
tumor DNA readcount annotation.

	Tumor RNA Depth

	Tumor RNA depth at this position. NA if VCF entry does not contain tumor RNA readcount annotation.

	Tumor RNA VAF

	Tumor RNA variant allele frequency (VAF) at this position. NA if VCF entry does not contain
tumor RNA readcount annotation.

	Normal Depth

	Normal DNA depth at this position. NA if VCF entry does not contain normal DNA readcount annotation.

	Normal VAF

	Normal DNA variant allele frequency (VAF) at this position. NA if VCF entry does not contain
normal DNA readcount annotation.

	Gene Expression

	Gene expression value for the annotated gene containing the variant. NA if VCF entry does not contain
gene expression annotation.

	Transcript Expression

	Transcript expression value for the annotated transcript containing the variant. NA if VCF entry does
not contain transcript expression annotation.

	Median MT Score

	Median ic50 binding affinity of the mutant epitope across all prediction algorithms used

	Median WT Score

	Median ic50 binding affinity of the wildtype epitope across all prediction algorithms used.
NA if there is no WT Epitope Seq.

	Median Fold Change

	Median WT Score / Median MT Score. NA if there is no WT Epitope Seq.

	Individual Prediction Algorithm WT and MT Scores (multiple)

	ic50 scores for the MT Epitope Seq and WT Eptiope Seq for the individual prediction algorithms used

	cterm_7mer_gravy_score

	Mean hydropathy of last 7 residues on the C-terminus of the peptide

	max_7mer_gravy_score

	Max GRAVY score of any kmer in the amino acid sequence. Used to determine if there are any extremely
hydrophobic regions within a longer amino acid sequence.

	difficult_n_terminal_residue (T/F)

	Is N-terminal amino acid a Glutamine, Glutamic acid, or Cysteine?

	c_terminal_cysteine (T/F)

	Is the C-terminal amino acid a Cysteine?

	c_terminal_proline (T/F)

	Is the C-terminal amino acid a Proline?

	cysteine_count

	Number of Cysteines in the amino acid sequence. Problematic because they can form disulfide bonds across
distant parts of the peptide

	n_terminal_asparagine (T/F)

	Is the N-terminal amino acid a Asparagine?

	asparagine_proline_bond_count

	Number of Asparagine-Proline bonds. Problematic because they can spontaneously cleave the peptide

	Best Cleavage Position (optional)

	Position of the highest predicted cleavage score

	Best Cleavage Score (optional)

	Highest predicted cleavage score

	Cleavage Sites (optional)

	List of all cleavage positions and their cleavage score

	Predicted Stability (optional)

	Stability of the pMHC-I complex

	Half Life (optional)

	Half-life of the pMHC-I complex

	Stability Rank (optional)

	The % rank stability of the pMHC-I complex

	NetMHCstab allele (optional)

	Nearest neighbor to the HLA Allele. Used for NetMHCstab prediction

[image: pVACseq ouput file columns illustration]

filtered.condensed.ranked.tsv Report Columns

	Column Name

	Description

	Gene Name

	The Ensembl gene name of the affected gene.

	Mutation

	The amino acid change of this mutation.

	Protein Position

	The protein position of the mutation.

	HGVSc

	The HGVS coding sequence name.

	HGVSp

	The HGVS protein sequence name.

	HLA Allele

	The HLA allele for this prediction.

	Mutation Position

	The one-based position of the start of the mutation within the epitope sequence. 0 if the
start of the mutation is before the epitope

	MT Epitope Seq

	Mutant epitope sequence.

	Median MT Score

	Median ic50 binding affinity of the mutant epitope across all prediction algorithms used

	Median WT Score

	Median ic50 binding affinity of the wildtype epitope across all prediction algorithms used.
NA if there is no WT Epitope Seq.

	Median Fold Change

	Median WT Score / Median MT Score. NA if there is no WT Epitope Seq.

	Best MT Score

	Lowest ic50 binding affinity of all prediction algorithms used

	Corresponding WT Score

	ic50 binding affinity of the wildtype epitope. NA if there is no WT Epitope Seq.

	Corresponding Fold Change

	Corresponding WT Score / Best MT Score. NA if there is no WT Epitope Seq.

	Tumor DNA Depth

	Tumor DNA depth at this position. NA if VCF entry does not contain tumor DNA readcount annotation.

	Tumor DNA VAF

	Tumor DNA variant allele frequency at this position. NA if VCF entry does not contain tumor DNA readcount annotation.

	Tumor RNA Depth

	Tumor RNA depth at this position. NA if VCF entry does not contain tumor RNA readcount annotation.

	Tumor RNA VAF

	Tumor RNA variant allele frequency at this position. NA if VCF entry does not contain tumor RNA readcount annotation.

	Gene Expression

	Gene expression value at this position. NA if VCF entry does not contain gene expression annotation.

	Rank

	A priority rank for the neoepitope (best = 1).

The pVACseq Neoeptiope Priority Rank

Each of the following 4 criteria are assigned a rank-ordered value (worst = 1):

	B = Rank of the mutant IC50 binding affinity, with the lowest being the best.
If the --top-score-metric is set to median (default) the Median MT Score
is used. If it is set to lowest the Best MT Score is used.

	F = Rank of Fold Change between MT and WT alleles, with the highest being the best.

	M = Rank of mutant allele expression, calculated as (Gene Expression * Tumor RNA VAF), with the highest being the best.

	D = Rank of Tumor DNA VAF, with the highest being the best.

A score is calculated from the above ranks with the following formula: B + F + (M * 2) + (D / 2). This score is then converted to a rank (best = 1).

Note

The pVACseq rank calculation detailed above is just one of many ways to prioritize neoeptiope candidates.
The body of evidence in this area is still incomplete, and the methodology of ranking is likely to change
substantially in future releases. While we have found this ranking useful, it is not a substitute for
careful curation and validation efforts.

 [image: pVACseq logo]

Filtering Commands

pVACseq currently offers four filters: a binding filter, a coverage filter,
a transcript support level filter, and a top score filter.

These filters are always run automatically as part
of the pVACseq pipeline using default cutoffs.

All filters can also be run manually on the filtered.tsv file to narrow the results down further,
or they can be run on the all_epitopes.tsv file to apply different filtering thresholds.

The binding filter is used to remove neoantigen candidates that do not meet desired peptide:MHC binding criteria.
The coverage filter is used to remove variants that do not meet desired read count and VAF criteria (in normal DNA
and tumor DNA/RNA). The transcript support level filter is used to remove variant annotations based on low quality
transcript annotations. The top score filter is used to select the most promising peptide candidate for each variant.
Multiple candidate peptides from a single somatic variant can be caused by multiple peptide lengths, registers, HLA alleles,
and transcript annotations.

Further details on each of these filters is provided below.

Note

The default values for filtering thresholds are suggestions only. While they are based on review of the literature
and consultation with our clinical and immunology colleagues, your specific use case will determine the appropriate values.

Binding Filter

usage: pvacseq binding_filter [-h] [-b BINDING_THRESHOLD]
 [-c MINIMUM_FOLD_CHANGE] [-m {lowest,median}]
 [--exclude-NAs] [-a]
 input_file output_file

positional arguments:
 input_file The final report .tsv file to filter.
 output_file Output .tsv file containing list of filtered epitopes
 based on binding affinity.

optional arguments:
 -h, --help show this help message and exit
 -b BINDING_THRESHOLD, --binding-threshold BINDING_THRESHOLD
 Report only epitopes where the mutant allele has ic50
 binding scores below this value. (default: 500)
 -c MINIMUM_FOLD_CHANGE, --minimum-fold-change MINIMUM_FOLD_CHANGE
 Minimum fold change between mutant binding score and
 wild-type score. The default is 0, which filters no
 results, but 1 is often a sensible option (requiring
 that binding is better to the MT than WT). (default:
 0)
 -m {lowest,median}, --top-score-metric {lowest,median}
 The ic50 scoring metric to use when filtering epitopes
 by binding-threshold or minimum fold change. lowest:
 Use the Best MT Score and corresponding Fold Change
 (i.e. use the lowest MT ic50 binding score and
 corresponding fold change of all chosen prediction
 methods). median: Use the Median MT Score and Median
 Fold Change (i.e. use the median MT ic50 binding score
 and fold change of all chosen prediction methods).
 (default: median)
 --exclude-NAs Exclude NA values from the filtered output. (default:
 False)
 -a, --allele-specific-binding-thresholds
 Use allele-specific binding thresholds. To print the
 allele-specific binding thresholds run `pvacseq
 allele_specific_cutoffs`. If an allele does not have a
 special threshold value, the `--binding-threshold`
 value will be used. (default: False)

The binding filter removes variants that don’t pass the chosen binding threshold.
The user can chose whether to apply this filter to the lowest or the median binding
affinity score by setting the --top-score-metric flag. The lowest binding
affinity score is recorded in the Best MT Score column and represents the lowest
ic50 score of all prediction algorithms that were picked during the previous pVACseq run.
The median binding affinity score is recorded in the Median MT Score column and
corresponds to the median ic50 score of all prediction algorithms used to create the report.
Be default, the binding filter runs on the median binding affinity.

The binding filter also offers the option to filter on Fold Change columns, which contain
the ratio of the MT score to the WT Score. This option can be activated by setting the
--minimum-fold-change threshold (to require that the mutant peptide is a better binder
than the corresponding wild type peptide). If the --top-score-metric option is set to lowest,
the Corresponding Fold Change column will be used (Corresponding WT Score/Best MT Score).
If the --top-score-metric option is set to median, the Median Fold Change column
will be used (Median WT Score/Median MT Score).

By default, entries with NA values will be included in the output. This
behavior can be turned off by using the --exclude-NAs flag.

Coverage Filter

usage: pvacseq coverage_filter [-h] [--normal-cov NORMAL_COV]
 [--tdna-cov TDNA_COV] [--trna-cov TRNA_COV]
 [--normal-vaf NORMAL_VAF] [--tdna-vaf TDNA_VAF]
 [--trna-vaf TRNA_VAF] [--expn-val EXPN_VAL]
 [--exclude-NAs]
 input_file output_file

positional arguments:
 input_file The final report .tsv file to filter
 output_file Output .tsv file containing list of filtered epitopes
 based on coverage and expression values

optional arguments:
 -h, --help show this help message and exit
 --normal-cov NORMAL_COV
 Normal Coverage Cutoff. Sites above this cutoff will
 be considered. (default: 5)
 --tdna-cov TDNA_COV Tumor DNA Coverage Cutoff. Sites above this cutoff
 will be considered. (default: 10)
 --trna-cov TRNA_COV Tumor RNA Coverage Cutoff. Sites above this cutoff
 will be considered. (default: 10)
 --normal-vaf NORMAL_VAF
 Normal VAF Cutoff. Sites BELOW this cutoff in normal
 will be considered. (default: 0.02)
 --tdna-vaf TDNA_VAF Tumor DNA VAF Cutoff. Sites above this cutoff will be
 considered. (default: 0.25)
 --trna-vaf TRNA_VAF Tumor RNA VAF Cutoff. Sites above this cutoff will be
 considered. (default: 0.25)
 --expn-val EXPN_VAL Gene and Transcript Expression cutoff. Sites above
 this cutoff will be considered. (default: 1.0)
 --exclude-NAs Exclude NA values from the filtered output. (default:
 False)

If the input VCF contains readcount and/or expression annotations, then the coverage filter
can be run again on the filtered.tsv report file to narrow down the results even further.
You can also run this filter again on the all_epitopes.tsv report file to apply different cutoffs.

The general goals of these filters are to limit variants for neoepitope prediction to those
with good read support and/or remove possible sub-clonal variants. In some cases the input
VCF may have already been filtered in this fashion. This filter also allows for removal of
variants that do not have sufficient evidence of RNA expression.

For more details on how to prepare input VCFs that contain all of these annotations, refer to
the Input File Preparation section for more information.

By default, entries with NA values will be included in the output. This
behavior can be turned off by using the --exclude-NAs flag.

Transcript Support Level Filter

usage: pvacseq transcript_support_level_filter [-h]
 [--maximum-transcript-support-level {1,2,3,4,5}]
 [--exclude-NAs]
 input_file output_file

positional arguments:
 input_file The all_epitopes.tsv or filtered.tsv pVACseq report
 file to filter.
 output_file Output .tsv file containting list of of filtered
 epitopes based on transcript support level.

optional arguments:
 -h, --help show this help message and exit
 --maximum-transcript-support-level {1,2,3,4,5}
 The threshold to use for filtering epitopes on the
 transcript support level. Keep all epitopes with a
 transcript support level <= to this cutoff. (default:
 1)
 --exclude-NAs Exclude NA values from the filtered output. (default:
 False)

This filter is used to eliminate variant annotations based on poorly-supported transcripts. By default,
only transcripts with a transcript support level (TSL) [https://useast.ensembl.org/info/genome/genebuild/transcript_quality_tags.html#tsl]
of <=1 are kept. This threshold can be adjusted using the --maximum-transcript-support-level
parameter.

By default, entries with NA values will be included in the output. This
behavior can be turned off by using the --exclude-NAs flag.

Top Score Filter

usage: pvacseq top_score_filter [-h] [-m {lowest,median}]
 input_file output_file

positional arguments:
 input_file The final report .tsv file to filter.
 output_file Output .tsv file containing only the list of the top
 epitope per variant.

optional arguments:
 -h, --help show this help message and exit
 -m {lowest,median}, --top-score-metric {lowest,median}
 The ic50 scoring metric to use for filtering. lowest:
 Use the best MT Score (i.e. the lowest MT ic50 binding
 score of all chosen prediction methods). median: Use
 the median MT Score (i.e. the median MT ic50 binding
 score of all chosen prediction methods). (default:
 median)

This filter picks the top epitope for a variant. Epitopes with the same
Chromosome - Start - Stop - Reference - Variant are identified as coming from
the same variant.

In order to account for different splice sites among the transcripts of a
variant that would lead to different peptides, this filter also takes into
account the different transcripts returned by VEP and will return
the top epitope for all transcripts if they are non-identical. If the
resulting list of top epitopes for the transcripts of a variant is identical,
the epitope for the transcript with the highest expression is returned. If
this information is not available, the transcript with the lowest Ensembl ID is returned.

By default the
--top-score-metric option is set to median which will apply this
filter to the Median MT Score column and pick the epitope with the lowest
median mutant ic50 score for each variant. If the --top-score-metric
option is set to lowest, the Best MT Score column is instead used to
make this determination.

It is important to note that there are several reasons why a particular variant can lead to multiple peptides
with different predicted binding affinities. The following can result in multiple peptides and/or binding predictions for a single
variant:

1. Different epitope lengths: specifying multiple epitope lengths results in similar but non-identical epitope sequences for each
variant (e.g. KLPEPCPS, KLPEPCPST, KLPEPCPSTT, KLPEPCPSTTP).
2. Different registers: pVACseq will test epitopes where the mutation is in every position (e.g. EPCPSTTP, PEPCPSTT, LPEPCPST, KLPEPCPS, …).
3. Different transcripts: in some case the peptide sequence surrounding a variant will depend on the reference transcript sequence, particularly
if there are alternative splice sites near the variant position.
4. Different HLA alleles: the HLA allele that produces the best predicted binding affinity is chosen.
5. A homozygous somatic variant with heterozygous proximal variants nearby may produce multiple different peptides.

The significance of choosing a single representative peptide can depend on your experimental or clinical aims.
For example, if you are planning to use short peptide sequences exactly as they were assessed
for binding affinity in pVACseq (e.g. specific 9-mers for in vitro experimental validation or perhaps a dendritic cell vaccine delivery
approach) then the selection of a specific peptide from the possibilities caused by different lengths, registers, etc.
is very important. In some cases you may wish to consider more criteria beyond which of these candidates has the best
predicted binding affinity and gets chosen by the Top Score Filter.

On the other hand, if you plan to use synthetic long peptides (SLPs) or encode your candidates in a DNA vector, you will likely include
flanking amino acids. This means that you often get a lot of the different short peptides that correspond to slightly different lengths or
registers within the longer containing sequence. In this scenario, pVACseq’s choice of a single candidate peptide by the Top Score Filter
isn’t actually that critical in the sense of losing other good candidates, because you may get them all anyway.

One important exception to this is the rare case where the same variant leads to different peptides in different transcripts (due to different splice site usage).
If multiple transcripts are expressed and
lead to distinct peptides, you may want to include both in your final list of candidates.
The top score filter supports this case, as described above.
This assumes you did not start with only a single transcript
model for each gene (e.g. using the --pick option in VEP) and also that if you are requiring transcripts with TSL=1 that there
are multiple qualifying transcripts that lead to different peptide sequences at the site of the variant. This will be fairly rare.
Even though most genes have alternative transcripts, they often have only subtle differences in open reading frame and overall
protein sequence, and only differences within the window that would influence a neoantigen candidate are consequential here.

 [image: pVACseq logo]

Additional Commands

To make using pVACseq easier, several convenience methods are included in the package.

Download Example Data

usage: pvacseq download_example_data [-h] destination_directory

positional arguments:
 destination_directory
 Directory for downloading example data

optional arguments:
 -h, --help show this help message and exit

Install VEP Plugin

usage: pvacseq install_vep_plugin [-h] vep_plugins_path

positional arguments:
 vep_plugins_path Path to your VEP_plugins directory

optional arguments:
 -h, --help show this help message and exit

List Valid Alleles

usage: pvacseq valid_alleles [-h]
 [-p {MHCflurry,MHCnuggetsI,MHCnuggetsII,NNalign,NetMHC,NetMHCIIpan,NetMHCcons,NetMHCpan,PickPocket,SMM,SMMPMBEC,SMMalign}]

optional arguments:
 -h, --help show this help message and exit
 -p {MHCflurry,MHCnuggetsI,MHCnuggetsII,NNalign,NetMHC,NetMHCIIpan,NetMHCcons,NetMHCpan,PickPocket,SMM,SMMPMBEC,SMMalign}, --prediction-algorithm {MHCflurry,MHCnuggetsI,MHCnuggetsII,NNalign,NetMHC,NetMHCIIpan,NetMHCcons,NetMHCpan,PickPocket,SMM,SMMPMBEC,SMMalign}
 The epitope prediction algorithms to use (default:
 None)

List Allele-Specific Cutoffs

usage: pvacseq allele_specific_cutoffs [-h] [-a ALLELE]

optional arguments:
 -h, --help show this help message and exit
 -a ALLELE, --allele ALLELE
 The allele to use (default: None)

 [image: pVACseq logo]

Optional Downstream Analysis Tools

Generate Protein Fasta

usage: pvacseq generate_protein_fasta [-h] [--input-tsv INPUT_TSV]
 [--mutant-only]
 [-d DOWNSTREAM_SEQUENCE_LENGTH]
 input_vcf peptide_sequence_length
 output_file

positional arguments:
 input_vcf A VEP-annotated single-sample VCF containing
 transcript, Wildtype protein sequence, and Downstream
 protein sequence information.
 peptide_sequence_length
 Length of the peptide sequence to use when creating
 the FASTA.
 output_file The output fasta file.

optional arguments:
 -h, --help show this help message and exit
 --input-tsv INPUT_TSV
 A pVACseq all_epitopes or filtered TSV file with
 epitopes to use for subsetting the input VCF to
 peptides of interest. Only the peptide sequences for
 the epitopes in the TSV will be used when creating the
 FASTA. (default: None)
 --mutant-only Only output mutant peptide sequences (default: False)
 -d DOWNSTREAM_SEQUENCE_LENGTH, --downstream-sequence-length DOWNSTREAM_SEQUENCE_LENGTH
 Cap to limit the downstream sequence length for
 frameshifts when creating the fasta file. Use 'full'
 to include the full downstream sequence. (default:
 1000)

This tool will extract protein sequences surrounding supported protein altering variants in an
input VCF file. One use case for this tool is to help select long peptides that contain short neoepitope
candidates. For example, if pvacseq was run to predict nonamers (9-mers) that are good binders and
the user wishes to select long peptide (e.g. 24-mer) sequences that contain the nonamer for synthesis
or encoding in a DNA vector. The protein sequence extracted will correspond to the transcript sequence
used in the annotated VCF. The alteration in the VCF (e.g. a somtic missense SNV) will be centered in the
protein sequence returned (if possible). If the variant is near the beginning or end of the CDS, it will
be as close to center as possible while returning the desired protein sequence length. If the variant
causes a frameshift, the full downstream protein sequence will be returned unless the user specifies otherwise
as described above.

Generate Condensed, Ranked Report

usage: pvacseq generate_condensed_ranked_report [-h] [-m {lowest,median}]
 input_file output_file

positional arguments:
 input_file A pVACseq .all_epitopes.tsv or .filtered.tsv report
 file
 output_file The file path to write the condensed, ranked report
 tsv to

optional arguments:
 -h, --help show this help message and exit
 -m {lowest,median}, --top-score-metric {lowest,median}
 The ic50 scoring metric to use for ranking epitopes by
 binding-threshold and minimum fold change. lowest: Use
 the best MT Score and Corresponding Fold Change (i.e.
 the lowest MT ic50 binding score and corresponding
 fold change of all chosen prediction methods). median:
 Use the median MT Score and Median Fold Change (i.e.
 the median MT ic50 binding score and fold change of
 all chosen prediction methods). (default: median)

This tool will produce a condensed version of the filtered TSV with only the most important columns remaining,
with a score for each neoepitope candidate added. Refer to the Output Files section for more details on the
format of this report.

Common Errors

Input VCF Sample Information

VCF contains more than one sample but sample_name is not set.

pVACseq supports running with a multi-sample VCF as input. However, in this case it
requires the user to pick the sample to analyze, as only variants that are
called in the specified sample will be processed.

When running a multi-sample VCF the sample_name parameter is used to
identify which sample to analyze. Take, for example, the following #CHROM
VCF header:

#CHROM POS ID REF ALT QUAL FILTER INFO FORMAT NORMAL TUMOR

This VCF contains two samples, NORMAL and TUMOR. Use TUMOR as the
sample_name parameter to process the tumor sample, and NORMAL to
process the normal sample.

If the input VCF only contains a single sample, the sample_name parameter
does not need to match the sample name in the VCF.

sample_name not a sample ID in the #CHROM header of VCF

This error occurs when running a multi-sample VCF and the sample_name
parameter doesn’t match any of the sample IDs in the VCF #CHROM header.
Take, for example, the following #CHROM header:

#CHROM POS ID REF ALT QUAL FILTER INFO FORMAT NORMAL TUMOR

All columns after FORMAT are sample identifiers that can be used as the
sample_name parameter when running pVACseq, depending on which sample the
user wishes to process. Change the sample_name parameter of your pvacseq
run command to match one of them.

normal_sample_name not a sample ID in the #CHROM header of VCF

Your pvacseq run command included the --normal-sample-name parameter.
However, the argument chosen did not match any of the sample identifiers in
the #CHROM header of the input VCF.

Take, for example, the following #CHROM VCF header:

#CHROM POS ID REF ALT QUAL FILTER INFO FORMAT NORMAL TUMOR

All columns after FORMAT are sample identifiers that can be used as the
--normal-sample-name parameter when running pVACseq, depending on which
sample is the normal sample in the VCF. Change the --normal-sample-name parameter of your pvacseq
run command to match the appropriate sample identifier.

VCF doesn’t contain any sample genotype information.

pVACseq uses the sample genotype to identified which variants were called.
Therefore, while a VCF without a FORMAT and sample column(s) is valid, it cannot be used
in pVACseq. You will need to manually edit your VCF and add a FORMAT and
sample column with the GT genotype field. For more information on this
formatting please see the VCF specification [https://github.com/samtools/hts-specs] for your specific VCF version.

Input VCF Compression and Indexing

Input VCF needs to be bgzipped when running with a proximal variants VCF.

When running pVACseq with the --proximal-variants-vcf argument, the main
input VCF needs to be bgzipped and tabix indexed. See the Input File
Preparation section of the documentation for instructions on how to do so.

Proximal variants VCF needs to be bgzipped.

The VCF provided via the --proximal-variants-vcf argument needs to be
bgzipped and tabix indexed. See the Input File
Preparation section of the documentation for instructions on how to do so.

No .tbi file found for input VCF. Input VCF needs to be tabix indexed if processing with proximal variants.

When running pVACseq with the --proximal-variants-vcf argument, the main
input VCF needs to be bgzipped and tabix indexed. See the Input File
Preparation section of the documentation for instructions on how to do so.

No .tbi file found for proximal variants VCF. Proximal variants VCF needs to be tabix indexed.

The VCF provided via the --proximal-variants-vcf argument needs to be
bgzipped and tabix indexed. See the Input File
Preparation section of the documentation for instructions on how to do so.

Input VCF VEP Annotation

Input VCF does not contain a CSQ header. Please annotate the VCF with VEP before running it.

pVACseq requires the input VCF to be annotated by VEP. The provided input VCF
doesn’t contain a CSQ INFO header. This indicates that it has not been
annotated. The Input File Preparation section of the
documentation provides instructions on how to annotate your VCF with VEP.

VCF doesn’t contain VEP DownstreamProtein annotations. Please re-annotate the VCF with VEP and the Wildtype and Downstream plugins.

Although the input VCF was annotated with VEP, it is missing the required
annotations provided by the VEP Downstream plugin. The input VCF will need to
be reannotated using all of the required arguments as outlined in the Input
File Preparation section of the documentation.

VCF doesn’t contain VEP WildtypeProtein annotations. Please re-annotate the VCF with VEP and the Wildtype and Downstream plugins.

Although the input VCF was annotated with VEP, it is missing the required
annotations provided by the VEP Wildtype plugin. The input VCF will need to
be reannotated using all of the required arguments as outlined in the Input
File Preparation section of the documentation.

Proximal Variants VCF does not contain a CSQ header. Please annotate the VCF with VEP before running it.

When running pVACseq with the --proximal-variants-vcf argument, that
proximal variants VCF needs to be annotated by VEP. The provided proximal
variants VCF
doesn’t contain a CSQ INFO header. This indicates that it has not been
annotated. The Input File Preparation section of the
documentation provides instructions on how to annotate your VCF with VEP.

There was a mismatch between the actual wildtype amino acid sequence and the expected amino acid sequence. Did you use the same reference build version for VEP that you used for creating the VCF?

This error occurs when the reference nucleotide at a specific position is
different than the Ensembl transcript nucleotide at the same position. This results in
the mutant amino acid in the Amino_acids VEP annotation being different
from the amino acid of the transcript protein sequence as predicted by the
Wildtype plugin. The Amino_acids VEP annotation is based on the reference
and alternate nucleotides of the variant while the WildtypeProtein
prediction is based on the Ensembl transcript nucleotide sequence.

This points to a fundamental disagreement between the reference that was
used during alignment and variant calling and the Ensembl reference. This
mismatch cannot be resolved by pVACseq, which is why this error is fatal.

Here are a few things that might resolve this error:

	Checking that the build of the VEP cache matches the alignment build and
downloading the correct cache if there is a build mismatch (such as a build
38 cache with a build 37 VCF, or vice versa)

	Using the --assembly parameter during VEP annotation with the
correct build version to match your VCF

	Using the fasta parameter during VEP annotation with the reference used
to create the VCF

	Manually fixing the reference bases in your VCF to match the one expected by
Ensembl

	Realigning and redoing variant calling on your sample with a reference that
matches what is expected by VEP

If this mismatch cannot be resolved the VCF cannot be used by pVACseq.

Other

The TSV file is empty. Please check that the input VCF contains missense, inframe indel, or frameshift mutations.

None of the variants in the VCF file are supported by pVACseq.

Illegal instruction (core dumped)

This issue may occur when you are trying to run the tensorflow-based
prediction algorithms MHCnuggets and/or MHCflurry. This indicates that your
computer’s hardware does not support the version of tensorflow that is
installed. Downgrading tensorflow manually to version 1.5.0 (pip install
tensorflow==1.5.0) should solve this problem.

 [image: pVACseq logo]

Frequently Asked Questions

What type of variants does pVACseq support?

pVACseq makes predictions for all transcripts of a variant that were annotated
as missense_variant, inframe_insertion, inframe_deletion,
inframe protein_altering_variant, or
frameshift_variant by VEP as long as the transcript was not also annotated
as start_lost. In addition, pVACseq only includes variants that were
called as homozygous or heterozygous variant. Variants that were not called
in the sample specified are skipped (determined by examining the GT genotype
field in the VCF).

My pVACseq command has been running for a long time. Why is
that?

The rate-limiting factor in running pVACseq is the number of calls that are
made to the IEDB software for binding score predictions.

Note

It is generally faster to make IEDB calls using a local install of IEDB than
using the IEDB web API. It is, therefore, recommended to use a local IEDB
install for any in-depth analysis. You should either install IEDB locally yourself
or use the pvactools docker image that includes it.

There are a number of factors that determine the number of IEDB calls to be made:

	Number of variants in your VCF

pVACseq will make predictions for each missense, inframe insertion,
inframe deletion, protein altering, and frameshift variant in your VCF.

Speedup suggestion: Split the VCF into smaller subsets and process each one
individually, in parallel.

	Number of transcripts for each variant

pVACseq will make predictions for each transcript of a supported variant
individually. The number of transcripts for each variant depends on how VEP was
run when the VCF was annotated.

Speedup suggestion: Use the --pick option when running VEP to
annotate each variant with the top transcript only.

	The --fasta-size parameter value

pVACseq takes an input VCF and creates a wildtype and a mutant
FASTA for each transcript. The number of FASTA entries that get submitted
to IEDB at a time is limited by the --fasta-size parameter in order
to reduce the load on the IEDB servers. The smaller the FASTA size, the
more calls have to be made to IEDB.

Speedup suggestion: When using a local IEDB install, increase the size
of this parameter.

	Number of prediction algorithms, epitope lengths, and HLA-alleles

One call to IEDB is made for each combination of these parameters for each chunk
of FASTA sequences. That means, for example, when 8 prediction
algorithms, 4 epitope lengths (8-11), and 6 HLA-alleles are chosen, 7*4*6=192 calls
to IEDB have to be made for each chunk of FASTA.

Speedup suggestion: Reduce the number of prediction algorithms,
epitope lengths, and/or HLA-alleles to the ones that will be the most
meaningful for your analysis. For example, the NetMHCcons method is
already a consensus method between NetMHC, NetMHCpan, and PickPocket.
If NetMHCcons is chosen, you may want to omit the underlying prediction
methods. Likewise, if you want to run NetMHC, NetMHCpan, and PickPocket
individually, you may want to skip NetMHCcons.

	--downstream-sequence-length parameter value

This parameter determines how many amino acids of the downstream sequence
after a frameshift mutation will be included in the wildtype FASTA sequence.
The shorter the downstream sequence length, the lower the number of epitopes
that IEDB needs to make binding predictions for.

Speedup suggestion: Reduce the value of this parameter.

	-t parameter value

This parameter determines the number of threads pvacseq will use for parallel
processing.

Speedup suggestion: Use a host with multiple cores and sufficient memory and
use a larger number of threads.

My pVACseq output file does not contain entries for all of the
alleles I chose. Why is that?

There could be a few reasons why the pVACseq output does not contain
predictions for alleles:

	The alleles you picked might have not been compatible with the prediction algorithm and/or epitope lengths chosen. In that case no calls for that allele would’ve been made and a status message would’ve printed to the screen.

	It could be that all epitope predictions for some alleles got filtered out. You can check the <sample_name>.all_epitopes.tsv file to see all called epitopes before filtering.

Why are some values in the WT Epitope Seq column NA ?

Not all mutant epitope sequences will have a corresponding wildtype epitope sequence.
This occurs when the mutant epitope sequence is novel and a comparison is therefore not
meaningful. For example:

	An epitope in the downstream portion of a frameshift might not have a corresponding wildtype epitope at the same position at all. The epitope is completely novel.

	An epitope that overlaps an inframe indel or multinucleotide polymorphism (MNP) might have a large number of amino acids that are different from the wildtype epitope at the corresponding position. If less than half of the amino acids between the mutant epitope sequence and the corresponding wildtype sequence match, the corresponding wildtype sequence in the report is set to NA.

What filters are applied during a pVACseq run?

By default we filter the neoepitopes on their binding score. If readcount
and/or expression annotations are available in the VCF we also filter on the depth, VAF,
and gene/trancript FPKM. In addition, candidates where the mutant epitope sequence is the
same as the wildtype epitope sequence will also be filtered out.

How can I see all of the candidate epitopes without any filters
applied?

The <sample_name>.all_epitopes.tsv will contain all of the epitopes predicted
before filters are applied.

Why have some of my epitopes been filtered out even though the Best MT Score is below 500?

By default, the binding filter will be applied to the Median MT Score
column. This is the median score value among all chosen prediction algorithms.
The Best MT Score column shows the lowest score among all
chosen prediction algorithms. To change this behavior and apply the binding
filter to the Best MT Score column you may set the --top-score-metric
parameter to lowest.

Why are entries with NA in the
VAF and depth columns not
filtered?

We do not filter out NA entries for depth and VAF since there is not
enough information to determine whether the cutoff has been met one way or another.

Why do some of my epitopes have no score predictions for certain prediction methods?

Not all prediction methods support all epitope lengths or all alleles. To see
a list of supported alleles for a prediction method you may use the
pvacseq valid_alleles command. For more details on
each algorithm refer to the IEDB MHC Class I [http://tools.iedb.org/mhci/help/#Method]
and Class II [http://tools.iedb.org/mhcii/help/#Method] documentation.

How is pVACseq licensed?

pVACseq is licensed under the open source license NPOSL-3.0 [http://opensource.org/licenses/NPOSL-3.0]. If you would like to discuss a license for
commercial applications, please contact us.

How do I cite pVACseq?

Jasreet Hundal+, Susanna Kiwala+, Joshua McMichael, Christopher A Miller,
Alexander T Wollam, Huiming Xia, Connor J Liu, Sidi Zhao, Yang-Yang Feng,
Aaron P Graubert, Amber Z Wollam, Jonas Neichin, Megan Neveau, Jason Walker,
William E Gillanders, Elaine R Mardis, Obi L Griffith, Malachi Griffith.
pVACtools: a computational toolkit to select and visualize cancer
neoantigens [https://doi.org/10.1101/501817]. (+)equal contribution.
bioRxiv 501817; doi: https://doi.org/10.1101/501817

Jasreet Hundal, Susanna Kiwala, Yang-Yang Feng, Connor J. Liu, Ramaswamy Govindan,
William C. Chapman, Ravindra Uppaluri, S. Joshua Swamidass, Obi L. Griffith,
Elaine R. Mardis, and Malachi Griffith. Accounting for proximal variants improves
neoantigen prediction [https://www.nature.com/articles/s41588-018-0283-9]. Nature Genetics.
2018, DOI: 10.1038/s41588-018-0283-9. PMID: 30510237 [https://www.ncbi.nlm.nih.gov/pubmed/30510237].

Jasreet Hundal, Beatriz M. Carreno, Allegra A. Petti, Gerald P. Linette, Obi
L. Griffith, Elaine R. Mardis, and Malachi Griffith. pVACseq: A genome-guided
in silico approach to identifying tumor neoantigens [http://www.genomemedicine.com/content/8/1/11]. Genome Medicine. 2016,
8:11, DOI: 10.1186/s13073-016-0264-5. PMID: 26825632 [http://www.ncbi.nlm.nih.gov/pubmed/26825632].

 [image: pVACbind logo]

pVACbind

This component of the pVACtools is used to predict neoantigens for the peptides in a FASTA file.

	Prerequisites

	Getting Started

	Usage

	Output Files
	all_epitopes.tsv and filtered.tsv Report Columns

	Filtering Commands
	Binding Filter

	Top Score Filter

	Additional Commands
	Download Example Data

	List Valid Alleles

	List Allele-Specific Cutoffs

 [image: pVACbind logo]

Prerequisites

The input to pVACbind is a FASTA file of peptide sequences.

 [image: pVACbind logo]

Getting Started

pVACbind provides a set of example data to show the expected format of input and output files.
You can download the data set by running the pvacbind download_example_data command.

The example data output can be reproduced by running the following command:

pvacbind run \
<example_data_dir>/input.fasta \
Test \
HLA-A*02:01,HLA-B*35:01,DRB1*11:01 \
MHCflurry MHCnuggetsI MHCnuggetsII NNalign NetMHC PickPocket SMM SMMPMBEC SMMalign \
<output_dir> \
-e 8,9,10

A detailed description of all command options can be found on the Usage page.

 [image: pVACbind logo]

Usage

Warning

Using a local IEDB installation is strongly recommended for larger datasets
or when the making predictions for many alleles, epitope lengths, or
prediction algorithms. More information on how to install IEDB locally can
be found on the Installation page.

usage: pvacbind run [-h] [-e EPITOPE_LENGTH]
 [--iedb-install-directory IEDB_INSTALL_DIRECTORY]
 [-b BINDING_THRESHOLD]
 [--allele-specific-binding-thresholds]
 [-m {lowest,median}] [-r IEDB_RETRIES] [-k] [-t N_THREADS]
 [--net-chop-method {cterm,20s}] [--netmhc-stab]
 [--net-chop-threshold NET_CHOP_THRESHOLD]
 [-a {sample_name}] [-s FASTA_SIZE] [--exclude-NAs]
 input_file sample_name allele
 {MHCflurry,MHCnuggetsI,MHCnuggetsII,NNalign,NetMHC,NetMHCIIpan,NetMHCcons,NetMHCpan,PickPocket,SMM,SMMPMBEC,SMMalign}
 [{MHCflurry,MHCnuggetsI,MHCnuggetsII,NNalign,NetMHC,NetMHCIIpan,NetMHCcons,NetMHCpan,PickPocket,SMM,SMMPMBEC,SMMalign} ...]
 output_dir

positional arguments:
 input_file A FASTA file
 sample_name The name of the sample being processed. This will be
 used as a prefix for output files.
 allele Name of the allele to use for epitope prediction.
 Multiple alleles can be specified using a comma-
 separated list. For a list of available alleles, use:
 `pvacseq valid_alleles`.
 {MHCflurry,MHCnuggetsI,MHCnuggetsII,NNalign,NetMHC,NetMHCIIpan,NetMHCcons,NetMHCpan,PickPocket,SMM,SMMPMBEC,SMMalign}
 The epitope prediction algorithms to use. Multiple
 prediction algorithms can be specified, separated by
 spaces.
 output_dir The directory for writing all result files.

optional arguments:
 -h, --help show this help message and exit
 -e EPITOPE_LENGTH, --epitope-length EPITOPE_LENGTH
 Length of subpeptides (neoepitopes) to predict.
 Multiple epitope lengths can be specified using a
 comma-separated list. Typical epitope lengths vary
 between 8-11. Required for Class I prediction
 algorithms. (default: None)
 --iedb-install-directory IEDB_INSTALL_DIRECTORY
 Directory that contains the local installation of IEDB
 MHC I and/or MHC II. (default: None)
 -b BINDING_THRESHOLD, --binding-threshold BINDING_THRESHOLD
 Report only epitopes where the mutant allele has ic50
 binding scores below this value. (default: 500)
 --allele-specific-binding-thresholds
 Use allele-specific binding thresholds. To print the
 allele-specific binding thresholds run `pvacbind
 allele_specific_cutoffs`. If an allele does not have a
 special threshold value, the `--binding-threshold`
 value will be used. (default: False)
 -m {lowest,median}, --top-score-metric {lowest,median}
 The ic50 scoring metric to use when filtering epitopes
 by binding-threshold or minimum fold change. lowest:
 Use the best MT Score and Corresponding Fold Change
 (i.e. the lowest MT ic50 binding score and
 corresponding fold change of all chosen prediction
 methods). median: Use the median MT Score and Median
 Fold Change (i.e. the median MT ic50 binding score and
 fold change of all chosen prediction methods).
 (default: median)
 -r IEDB_RETRIES, --iedb-retries IEDB_RETRIES
 Number of retries when making requests to the IEDB
 RESTful web interface. Must be less than or equal to
 100. (default: 5)
 -k, --keep-tmp-files Keep intermediate output files. This might be useful
 for debugging purposes. (default: False)
 -t N_THREADS, --n-threads N_THREADS
 Number of threads to use for parallelizing peptide-MHC
 binding prediction calls. (default: 1)
 --net-chop-method {cterm,20s}
 NetChop prediction method to use ("cterm" for C term
 3.0, "20s" for 20S 3.0). C-term 3.0 is trained with
 publicly available MHC class I ligands and the authors
 believe that is performs best in predicting the
 boundaries of CTL epitopes. 20S is trained with in
 vitro degradation data. (default: None)
 --netmhc-stab Run NetMHCStabPan after all filtering and add
 stability predictions to predicted epitopes. (default:
 False)
 --net-chop-threshold NET_CHOP_THRESHOLD
 NetChop prediction threshold (increasing the threshold
 results in better specificity, but worse sensitivity).
 (default: 0.5)
 -a {sample_name}, --additional-report-columns {sample_name}
 Additional columns to output in the final report. If
 sample_name is chosen, this will add a column with the
 sample name in every row of the output. This can be
 useful if you later want to concatenate results from
 multiple individuals into a single file. (default:
 None)
 -s FASTA_SIZE, --fasta-size FASTA_SIZE
 Number of FASTA entries per IEDB request. For some
 resource-intensive prediction algorithms like
 Pickpocket and NetMHCpan it might be helpful to reduce
 this number. Needs to be an even number. (default:
 200)
 --exclude-NAs Exclude NA values from the filtered output. (default:
 False)

 [image: pVACbind logo]

Output Files

The pVACbind pipeline will write its results in separate folders depending on
which prediction algorithms were chosen:

	MHC_Class_I: for MHC class I prediction algorithms

	MHC_Class_II: for MHC class II prediction algorithms

	combined: If both MHC class I and MHC class II prediction algorithms were run, this folder combines the neoeptiope predictions from both

Each folder will contain the same list of output files (listed in the order
created):

	File Name

	Description

	<sample_name>.tsv

	An intermediate file with variant information parsed from the input files.

	<sample_name>.tsv_<chunks> (multiple)

	The above file but split into smaller chunks for easier processing with IEDB.

	<sample_name>.all_epitopes.tsv

	A list of all predicted epitopes and their binding affinity scores, with
additional variant information from the <sample_name>.tsv.

	<sample_name>.filtered.tsv

	The above file after applying all filters, with cleavage site and stability
predictions added.

all_epitopes.tsv and filtered.tsv Report Columns

	Column Name

	Description

	Mutation

	The FASTA ID of the peptide sequence the epitope belongs to

	HLA Allele

	The HLA allele for this prediction

	Sub-peptide Position

	The one-based position of the epitope in the protein sequence used to make the prediction

	Epitope Seq

	The epitope sequence

	Median Score

	Median ic50 binding affinity of the epitope of all prediction algorithms used

	Best Score

	Lowest ic50 binding affinity of all prediction algorithms used

	Best Score Method

	Prediction algorithm with the lowest ic50 binding affinity for this epitope

	Individual Prediction Algorithm Scores (multiple)

	ic50 scores for the Epitope Seq for the individual prediction algorithms used

	cterm_7mer_gravy_score

	Mean hydropathy of last 7 residues on the C-terminus of the peptide

	max_7mer_gravy_score

	Max GRAVY score of any kmer in the amino acid sequence. Used to determine if there are any extremely
hydrophobic regions within a longer amino acid sequence.

	difficult_n_terminal_residue (T/F)

	Is N-terminal amino acid a Glutamine, Glutamic acid, or Cysteine?

	c_terminal_cysteine (T/F)

	Is the C-terminal amino acid a Cysteine?

	c_terminal_proline (T/F)

	Is the C-terminal amino acid a Proline?

	cysteine_count

	Number of Cysteines in the amino acid sequence. Problematic because they can form disulfide bonds across
distant parts of the peptide

	n_terminal_asparagine (T/F)

	Is the N-terminal amino acid a Asparagine?

	asparagine_proline_bond_count

	Number of Asparagine-Proline bonds. Problematic because they can spontaneously cleave the peptide

	Best Cleavage Position (optional)

	Position of the highest predicted cleavage score

	Best Cleavage Score (optional)

	Highest predicted cleavage score

	Cleavage Sites (optional)

	List of all cleavage positions and their cleavage score

	Predicted Stability (optional)

	Stability of the pMHC-I complex

	Half Life (optional)

	Half-life of the pMHC-I complex

	Stability Rank (optional)

	The % rank stability of the pMHC-I complex

	NetMHCstab allele (optional)

	Nearest neighbor to the HLA Allele. Used for NetMHCstab prediction

 [image: pVACbind logo]

Filtering Commands

pVACbind currently offers two filters: a binding filter and a top score filter.

These filters are always run automatically as part
of the pVACbind pipeline using default cutoffs.

All filters can also be run manually on the filtered.tsv file to narrow the results down further,
or they can be run on the all_epitopes.tsv file to apply different filtering thresholds.

The binding filter is used to remove neoantigen candidates that do not meet desired peptide:MHC binding criteria.
The top score filter is used to select the most promising peptide candidate for each variant.
Multiple candidate peptides from a single somatic variant can be caused by multiple peptide lengths, registers, HLA alleles,
and transcript annotations.

Further details on each of these filters is provided below.

Note

The default values for filtering thresholds are suggestions only. While they are based on review of the literature
and consultation with our clinical and immunology colleagues, your specific use case will determine the appropriate values.

Binding Filter

usage: pvacbind binding_filter [-h] [-b BINDING_THRESHOLD]
 [-m {lowest,median}] [--exclude-NAs] [-a]
 input_file output_file

positional arguments:
 input_file The final report .tsv file to filter.
 output_file Output .tsv file containing list of filtered epitopes
 based on binding affinity.

optional arguments:
 -h, --help show this help message and exit
 -b BINDING_THRESHOLD, --binding-threshold BINDING_THRESHOLD
 Report only epitopes where the mutant allele has ic50
 binding scores below this value. (default: 500)
 -m {lowest,median}, --top-score-metric {lowest,median}
 The ic50 scoring metric to use when filtering epitopes
 by binding-threshold or minimum fold change. lowest:
 Use the Best MT Score and corresponding Fold Change
 (i.e. use the lowest MT ic50 binding score and
 corresponding fold change of all chosen prediction
 methods). median: Use the Median MT Score and Median
 Fold Change (i.e. use the median MT ic50 binding score
 and fold change of all chosen prediction methods).
 (default: median)
 --exclude-NAs Exclude NA values from the filtered output. (default:
 False)
 -a, --allele-specific-binding-thresholds
 Use allele-specific binding thresholds. To print the
 allele-specific binding thresholds run `pvacbind
 allele_specific_cutoffs`. If an allele does not have a
 special threshold value, the `--binding-threshold`
 value will be used. (default: False)

The binding filter removes variants that don’t pass the chosen binding threshold.
The user can chose whether to apply this filter to the lowest or the median binding
affinity score by setting the --top-score-metric flag. The lowest binding
affinity score is recorded in the Best MT Score column and represents the lowest
ic50 score of all prediction algorithms that were picked during the previous pVACseq run.
The median binding affinity score is recorded in the Median MT Score column and
corresponds to the median ic50 score of all prediction algorithms used to create the report.
Be default, the binding filter runs on the median binding affinity.

By default, entries with NA values will be included in the output. This
behavior can be turned off by using the --exclude-NAs flag.

Top Score Filter

usage: pvacbind top_score_filter [-h] [-m {lowest,median}]
 input_file output_file

positional arguments:
 input_file The final report .tsv file to filter.
 output_file Output .tsv file containing only the list of the top
 epitope per variant.

optional arguments:
 -h, --help show this help message and exit
 -m {lowest,median}, --top-score-metric {lowest,median}
 The ic50 scoring metric to use for filtering. lowest:
 Use the best MT Score (i.e. the lowest MT ic50 binding
 score of all chosen prediction methods). median: Use
 the median MT Score (i.e. the median MT ic50 binding
 score of all chosen prediction methods). (default:
 median)

This filter picks the top epitope for a variant. By default the
--top-score-metric option is set to median which will apply this
filter to the Median MT Score column and pick the epitope with the lowest
median mutant ic50 score for each variant. If the --top-score-metric
option is set to lowest, the Best MT Score column is instead used to
make this determination.

 [image: pVACbind logo]

Additional Commands

To make using pVACbind easier, several convenience methods are included in the package.

Download Example Data

usage: pvacbind download_example_data [-h] destination_directory

positional arguments:
 destination_directory
 Directory for downloading example data

optional arguments:
 -h, --help show this help message and exit

List Valid Alleles

usage: pvacbind valid_alleles [-h]
 [-p {MHCflurry,MHCnuggetsI,MHCnuggetsII,NNalign,NetMHC,NetMHCIIpan,NetMHCcons,NetMHCpan,PickPocket,SMM,SMMPMBEC,SMMalign}]

optional arguments:
 -h, --help show this help message and exit
 -p {MHCflurry,MHCnuggetsI,MHCnuggetsII,NNalign,NetMHC,NetMHCIIpan,NetMHCcons,NetMHCpan,PickPocket,SMM,SMMPMBEC,SMMalign}, --prediction-algorithm {MHCflurry,MHCnuggetsI,MHCnuggetsII,NNalign,NetMHC,NetMHCIIpan,NetMHCcons,NetMHCpan,PickPocket,SMM,SMMPMBEC,SMMalign}
 The epitope prediction algorithms to use (default:
 None)

List Allele-Specific Cutoffs

usage: pvacbind allele_specific_cutoffs [-h] [-a ALLELE]

optional arguments:
 -h, --help show this help message and exit
 -a ALLELE, --allele ALLELE
 The allele to use (default: None)

 [image: pVACfuse logo]

pVACfuse

This component of the pVACtools workflow provides support for predicting
neoantigens from gene fusions. Currently, fusion variants as reported by
INTEGRATE-Neo [https://github.com/ChrisMaherLab/INTEGRATE-Neo] are supported,
and any of the binding affinity prediction software available in pVACseq can
be used for binding prediction.

	Prerequisites
	Fusion detection and annotation
	AGFusion

	INTEGRATE-Neo

	Getting Started

	Usage

	Output Files
	all_epitopes.tsv and filtered.tsv Report Columns

	filtered.condensed.ranked.tsv Report Columns
	The pVACfuse Neoeptiope Priority Rank

	Filtering Commands
	Binding Filter

	Top Score Filter

	Additional Commands
	Download Example Data

	List Valid Alleles

	List Allele-Specific Cutoffs

	Optional Downstream Analysis Tools
	Generate Protein Fasta

 [image: pVACfuse logo]

Prerequisites

Fusion detection and annotation

pVACfuse accepts two types of inputs, either an annotated bedpe file with
fusion information from INTEGRATE-Neo [https://github.com/ChrisMaherLab/INTEGRATE-Neo]
or a output directory from AGFusion [https://github.com/murphycj/AGFusion] (recommended).

AGFusion

AGFusion allows a user to annotate output files from several fusion callers
using the agfusion batch command. The below example is for annotating the
output from the STAR-Fusion caller but many other fusion callers are supported.
For a full list see the AGFusion documentation [https://github.com/murphycj/AGFusion#input-from-fusion-finding-algorithms].

agfusion batch \
-f <star_fusion_tsv> \
-a starfusion \
-db agfusion.homo_sapiens.87.db \
- <output_directory> \
--middlestar \
--noncanonical

The --middlestar flag is required in order to use the ouput with pVACfuse.
This will indicate the fusion position in the fusion peptide sequence.

The --noncanonical flag is optional and can be used to annotate the fusion
with informations from all possible transcripts. By default only canonical
transcripts are used.

INTEGRATE-Neo

Fusion
detection will be preformed using INTEGRATE [https://sourceforge.net/p/integrate-fusion/wiki/Home]
with annotations from INTEGRATE-Neo [https://github.com/ChrisMaherLab/INTEGRATE-Neo]. It should be
possible to start with fusions from another caller, convert the output to bedpe format, annotate the
bedpe with INTEGRATE-Neo and then feed these candidates into pVACfuse.

	Align RNA with Tophat2 (a requirement of INTEGRATE) to obtain accepted_hits.bam and unmapped.bam

	(OPTIONAL) Align WGS DNA with BWA aln/sampe (NOT MEM, a requirement of INTEGRATE) to obtain tumor.dna.bam and normal.dna.bam

	Produce a gene annotations file with gtfToGenePred [https://bioconda.github.io/recipes/ucsc-gtftogenepred/README.html]

gtfToGenePred -genePredExt -geneNameAsName2 ref.gtf ref.genePred
cut -f 1-10,12 ref.genePred > tmp.txt
echo -e "#GRCh37.ensGene.name\tGRCh37.ensGene.chrom\tGRCh37.ensGene.strand\tGRCh37.ensGene.txStart\tGRCh37.ensGene.txEnd\tGRCh37.ensGene.cdsStart\tGRCh37.ensGene.cdsEnd\tGRCh37.ensGene.exonCount\tGRCh37.ensGene.exonStarts\tGRCh37.ensGene.exonEnds\tGRCh37.ensemblToGeneName.value" > annot.txt
cat tmp.txt >> annot.txt

	Run INTEGRATE [https://sourceforge.net/p/integrate-fusion/wiki/Home] to obtain fusions.bedpe

Integrate fusion ref.fa annot.txt bwts accepted_hits.bam unmappeds.bam [tumor.dna.bam normal.dna.bam | tumor.dna.bam]

	Run INTEGRATE-Neo [https://github.com/ChrisMaherLab/INTEGRATE-Neo] to obtain annotated fusions bedpe file

integrate-neo.py -t hla.optitype -f fusions.bedpe -r ref.fa -g ref.genePred -k

 [image: pVACfuse logo]

Getting Started

pVACfuse provides a set of example data to show the expected format of input and output files.
You can download the data set by running the pvacfuse download_example_data command.

There are two option as to how to run pVACfuse. It accepts either a
INTEGRATE-neo output bedpe file or a AGFusion output directory.

The following command is an example for how to run pVACfuse with an
INTEGRATE-neo bedpe file and will regenerate the
results_from_integrate_neo example data:

pvacfuse run \
<example_data_dir>/fusions.bedpe.annot \
Test \
HLA-A*02:01,HLA-B*35:01,DRB1*11:01 \
MHCflurry MHCnuggetsI MHCnuggetsII NNalign NetMHC PickPocket SMM SMMPMBEC SMMalign \
<output_dir> \
-e 8,9,10

The results_from_agfusion example data can be regenerated like so:

pvacfuse run \
<example_data_dir>/agfusion/ \
Test \
HLA-A*02:01,HLA-B*35:01,DRB1*11:01 \
MHCflurry MHCnuggetsI MHCnuggetsII NNalign NetMHC PickPocket SMM SMMPMBEC SMMalign \
<output_dir> \
-e 8,9,10

A detailed description of all command options can be found on the Usage page.

 [image: pVACfuse logo]

Usage

Warning

Using a local IEDB installation is strongly recommended for larger datasets
or when the making predictions for many alleles, epitope lengths, or
prediction algorithms. More information on how to install IEDB locally can
be found on the Installation page.

usage: pvacfuse run [-h] [-e EPITOPE_LENGTH]
 [--iedb-install-directory IEDB_INSTALL_DIRECTORY]
 [-b BINDING_THRESHOLD]
 [--allele-specific-binding-thresholds]
 [-m {lowest,median}] [-r IEDB_RETRIES] [-k] [-t N_THREADS]
 [--net-chop-method {cterm,20s}] [--netmhc-stab]
 [--net-chop-threshold NET_CHOP_THRESHOLD]
 [-a {sample_name}] [-s FASTA_SIZE] [--exclude-NAs]
 [-l PEPTIDE_SEQUENCE_LENGTH]
 [-d DOWNSTREAM_SEQUENCE_LENGTH]
 input_file sample_name allele
 {MHCflurry,MHCnuggetsI,MHCnuggetsII,NNalign,NetMHC,NetMHCIIpan,NetMHCcons,NetMHCpan,PickPocket,SMM,SMMPMBEC,SMMalign}
 [{MHCflurry,MHCnuggetsI,MHCnuggetsII,NNalign,NetMHC,NetMHCIIpan,NetMHCcons,NetMHCpan,PickPocket,SMM,SMMPMBEC,SMMalign} ...]
 output_dir

positional arguments:
 input_file An INTEGRATE-Neo annotated bedpe file with fusions or
 a AGfusion output directory.
 sample_name The name of the sample being processed. This will be
 used as a prefix for output files.
 allele Name of the allele to use for epitope prediction.
 Multiple alleles can be specified using a comma-
 separated list. For a list of available alleles, use:
 `pvacseq valid_alleles`.
 {MHCflurry,MHCnuggetsI,MHCnuggetsII,NNalign,NetMHC,NetMHCIIpan,NetMHCcons,NetMHCpan,PickPocket,SMM,SMMPMBEC,SMMalign}
 The epitope prediction algorithms to use. Multiple
 prediction algorithms can be specified, separated by
 spaces.
 output_dir The directory for writing all result files.

optional arguments:
 -h, --help show this help message and exit
 -e EPITOPE_LENGTH, --epitope-length EPITOPE_LENGTH
 Length of subpeptides (neoepitopes) to predict.
 Multiple epitope lengths can be specified using a
 comma-separated list. Typical epitope lengths vary
 between 8-11. Required for Class I prediction
 algorithms. (default: None)
 --iedb-install-directory IEDB_INSTALL_DIRECTORY
 Directory that contains the local installation of IEDB
 MHC I and/or MHC II. (default: None)
 -b BINDING_THRESHOLD, --binding-threshold BINDING_THRESHOLD
 Report only epitopes where the mutant allele has ic50
 binding scores below this value. (default: 500)
 --allele-specific-binding-thresholds
 Use allele-specific binding thresholds. To print the
 allele-specific binding thresholds run `pvacfuse
 allele_specific_cutoffs`. If an allele does not have a
 special threshold value, the `--binding-threshold`
 value will be used. (default: False)
 -m {lowest,median}, --top-score-metric {lowest,median}
 The ic50 scoring metric to use when filtering epitopes
 by binding-threshold or minimum fold change. lowest:
 Use the best MT Score and Corresponding Fold Change
 (i.e. the lowest MT ic50 binding score and
 corresponding fold change of all chosen prediction
 methods). median: Use the median MT Score and Median
 Fold Change (i.e. the median MT ic50 binding score and
 fold change of all chosen prediction methods).
 (default: median)
 -r IEDB_RETRIES, --iedb-retries IEDB_RETRIES
 Number of retries when making requests to the IEDB
 RESTful web interface. Must be less than or equal to
 100. (default: 5)
 -k, --keep-tmp-files Keep intermediate output files. This might be useful
 for debugging purposes. (default: False)
 -t N_THREADS, --n-threads N_THREADS
 Number of threads to use for parallelizing peptide-MHC
 binding prediction calls. (default: 1)
 --net-chop-method {cterm,20s}
 NetChop prediction method to use ("cterm" for C term
 3.0, "20s" for 20S 3.0). C-term 3.0 is trained with
 publicly available MHC class I ligands and the authors
 believe that is performs best in predicting the
 boundaries of CTL epitopes. 20S is trained with in
 vitro degradation data. (default: None)
 --netmhc-stab Run NetMHCStabPan after all filtering and add
 stability predictions to predicted epitopes. (default:
 False)
 --net-chop-threshold NET_CHOP_THRESHOLD
 NetChop prediction threshold (increasing the threshold
 results in better specificity, but worse sensitivity).
 (default: 0.5)
 -a {sample_name}, --additional-report-columns {sample_name}
 Additional columns to output in the final report. If
 sample_name is chosen, this will add a column with the
 sample name in every row of the output. This can be
 useful if you later want to concatenate results from
 multiple individuals into a single file. (default:
 None)
 -s FASTA_SIZE, --fasta-size FASTA_SIZE
 Number of FASTA entries per IEDB request. For some
 resource-intensive prediction algorithms like
 Pickpocket and NetMHCpan it might be helpful to reduce
 this number. Needs to be an even number. (default:
 200)
 --exclude-NAs Exclude NA values from the filtered output. (default:
 False)
 -l PEPTIDE_SEQUENCE_LENGTH, --peptide-sequence-length PEPTIDE_SEQUENCE_LENGTH
 Length of the peptide sequence to use when creating
 the FASTA. (default: 21)
 -d DOWNSTREAM_SEQUENCE_LENGTH, --downstream-sequence-length DOWNSTREAM_SEQUENCE_LENGTH
 Cap to limit the downstream sequence length for
 frameshifts when creating the FASTA file. Use 'full'
 to include the full downstream sequence. (default:
 1000)

 [image: pVACfuse logo]

Output Files

The pVACfuse pipeline will write its results in separate folders depending on
which prediction algorithms were chosen:

	MHC_Class_I: for MHC class I prediction algorithms

	MHC_Class_II: for MHC class II prediction algorithms

	combined: If both MHC class I and MHC class II prediction algorithms were run, this folder combines the neoeptiope predictions from both

Each folder will contain the same list of output files (listed in the order
created):

	File Name

	Description

	<sample_name>.tsv

	An intermediate file with variant and transcript information parsed from the input file(s).

	<sample_name>.tsv_<chunks> (multiple)

	The above file but split into smaller chunks for easier processing with IEDB.

	<sample_name>.all_epitopes.tsv

	A list of all predicted epitopes and their binding affinity scores, with
additional variant information from the <sample_name>.tsv.

	<sample_name>.filtered.tsv

	The above file after applying all filters, with cleavage site and stability
predictions added.

	<sample_name>.filtered.condensed.ranked.tsv

	A condensed version of the filtered TSV with only the most important columns
remaining, with a priority score for each neoepitope candidate added.

all_epitopes.tsv and filtered.tsv Report Columns

In order to keep the outputs consistent, pVACfuse uses the same output columns
as pVACseq but some of the values will be NA if a column doesn’t apply to
pVACfuse.

	Column Name

	Description

	Chromosome

	The chromosome of the 5p and 3p portion of the fusion, separated by ” / “

	Start

	The start position of the 5p and 3p portion of the fusion, separated by ” / “

	Stop

	The stop position of the 5p and 3p portion of the fusion, separated by ” / “

	Reference

	fusion

	Variant

	fusion

	Transcript

	The Ensembl IDs of the affected transcripts

	Transcript Support Level

	NA

	Ensembl Gene ID

	NA

	Variant Type

	The type of fusion. inframe_fusion for inframe fusions, frameshift_fusion for frameshift fusions

	Mutation

	NA

	Protein Position

	The position of the fusion in the fusion protein sequence

	Gene Name

	The Ensembl gene names of the affected genes

	HGVSc

	NA

	HGVSp

	NA

	HLA Allele

	The HLA allele for this prediction

	Peptide Length

	The peptide length of the epitope

	Sub-peptide Position

	The one-based position of the epitope in the protein sequence used to make the prediction

	Mutation Position

	NA

	MT Epitope Seq

	Mutant epitope sequence

	WT Epitope Seq

	NA

	Best MT Score Method

	Prediction algorithm with the lowest mutant ic50 binding affinity for this epitope

	Best MT Score

	Lowest ic50 binding affinity of all prediction algorithms used

	Corresponding WT Score

	NA

	Corresponding Fold Change

	NA

	Tumor DNA Depth

	NA

	Tumor DNA VAF

	NA

	Tumor RNA Depth

	NA

	Tumor RNA VAF

	NA

	Normal Depth

	NA

	Normal VAF

	NA

	Gene Expression

	NA

	Transcript Expression

	NA

	Median MT Score

	Median ic50 binding affinity of the mutant epitope of all prediction algorithms used

	Median WT Score

	NA

	Median Fold Change

	NA

	Individual Prediction Algorithm WT and MT Scores (multiple)

	ic50 scores for the MT Epitope Seq and WT Epitope Seq for the individual prediction algorithms used

	cterm_7mer_gravy_score

	Mean hydropathy of last 7 residues on the C-terminus of the peptide

	max_7mer_gravy_score

	Max GRAVY score of any kmer in the amino acid sequence. Used to determine if there are any extremely
hydrophobic regions within a longer amino acid sequence.

	difficult_n_terminal_residue (T/F)

	Is N-terminal amino acid a Glutamine, Glutamic acid, or Cysteine?

	c_terminal_cysteine (T/F)

	Is the C-terminal amino acid a Cysteine?

	c_terminal_proline (T/F)

	Is the C-terminal amino acid a Proline?

	cysteine_count

	Number of Cysteines in the amino acid sequence. Problematic because they can form disulfide bonds across
distant parts of the peptide

	n_terminal_asparagine (T/F)

	Is the N-terminal amino acid a Asparagine?

	asparagine_proline_bond_count

	Number of Asparagine-Proline bonds. Problematic because they can spontaneously cleave the peptide

	Best Cleavage Position (optional)

	Position of the highest predicted cleavage score

	Best Cleavage Score (optional)

	Highest predicted cleavage score

	Cleavage Sites (optional)

	List of all cleavage positions and their cleavage score

	Predicted Stability (optional)

	Stability of the pMHC-I complex

	Half Life (optional)

	Half-life of the pMHC-I complex

	Stability Rank (optional)

	The % rank stability of the pMHC-I complex

	NetMHCstab allele (optional)

	Nearest neighbor to the HLA Allele. Used for NetMHCstab prediction

filtered.condensed.ranked.tsv Report Columns

	Column Name

	Description

	Gene Name

	The Ensembl gene names of the affected genes

	Mutation

	NA

	Protein Position

	The position of the fusion in the fusion protein sequence

	HGVSc

	NA

	HGVSp

	NA

	HLA Allele

	The HLA allele for this prediction.

	Mutation Position

	NA

	MT Epitope Seq

	Mutant epitope sequence.

	Median MT Score

	Median ic50 binding affinity of the mutant epitope across all prediction algorithms used

	Median WT Score

	NA

	Median Fold Change

	NA

	Best MT Score

	Lowest ic50 binding affinity of all prediction algorithms used

	Corresponding WT Score

	NA

	Corresponding Fold Change

	NA

	Tumor DNA Depth

	NA

	Tumor DNA VAF

	NA

	Tumor RNA Depth

	NA

	Tumor RNA VAF

	NA

	Gene Expression

	NA

	Rank

	A priority rank for the neoepitope (best = 1).

The pVACfuse Neoeptiope Priority Rank

The underlying formula for calculating the pVACfuse rank is the same as it is
for The pVACseq Neoeptiope Priority Rank. However, since only the binding affinity is available for
fusion predictions, the pVACfuse simply ranks the neoeptiopes according to
their binding affinity, with the lowest being the best. If the --top-score-metric
is set to median (default) the Median MT Score is used. If it
is set to lowest the Best MT Score is used.

 [image: pVACfuse logo]

Filtering Commands

pVACfuse currently offers two filters: a binding filter
and a top score filter.

The binding filter and top score filter are always run automatically as part
of the pVACfuse pipeline.

All filters can also be run manually to narrow the final results down further
or to redefine the filters entirely and produce a new candidate list from the
all_epitopes.tsv file.

Note

The default values for filtering thresholds are suggestions only. While they are based on review of the literature
and consultation with our clinical and immunology colleagues, your specific use case will determine the appropriate values.

Binding Filter

usage: pvacfuse binding_filter [-h] [-b BINDING_THRESHOLD]
 [-m {lowest,median}] [--exclude-NAs] [-a]
 input_file output_file

positional arguments:
 input_file The final report .tsv file to filter.
 output_file Output .tsv file containing list of filtered epitopes
 based on binding affinity.

optional arguments:
 -h, --help show this help message and exit
 -b BINDING_THRESHOLD, --binding-threshold BINDING_THRESHOLD
 Report only epitopes where the mutant allele has ic50
 binding scores below this value. (default: 500)
 -m {lowest,median}, --top-score-metric {lowest,median}
 The ic50 scoring metric to use when filtering epitopes
 by binding-threshold or minimum fold change. lowest:
 Use the Best MT Score and corresponding Fold Change
 (i.e. use the lowest MT ic50 binding score and
 corresponding fold change of all chosen prediction
 methods). median: Use the Median MT Score and Median
 Fold Change (i.e. use the median MT ic50 binding score
 and fold change of all chosen prediction methods).
 (default: median)
 --exclude-NAs Exclude NA values from the filtered output. (default:
 False)
 -a, --allele-specific-binding-thresholds
 Use allele-specific binding thresholds. To print the
 allele-specific binding thresholds run `pvacfuse
 allele_specific_cutoffs`. If an allele does not have a
 special threshold value, the `--binding-threshold`
 value will be used. (default: False)

The binding filter filters out variants that don’t pass the chosen binding threshold.
The user can chose whether to apply this filter to the lowest or the median binding
affinity score by setting the --top-score-metric flag. The lowest binding
affinity score is recorded in the Best MT Score column and represents the lowest
ic50 score of all prediction algorithms that were picked during the previous pVACseq run.
The median binding affinity score is recorded in the Median MT Score column and
corresponds to the median ic50 score of all prediction algorithms used to create the report.
Be default, the binding filter runs on the median binding affinity.

By default, entries with NA values will be included in the output. This
behavior can be turned off by using the --exclude-NAs flag.

Top Score Filter

usage: pvacfuse top_score_filter [-h] [-m {lowest,median}]
 input_file output_file

positional arguments:
 input_file The final report .tsv file to filter.
 output_file Output .tsv file containing only the list of the top
 epitope per variant.

optional arguments:
 -h, --help show this help message and exit
 -m {lowest,median}, --top-score-metric {lowest,median}
 The ic50 scoring metric to use for filtering. lowest:
 Use the best MT Score (i.e. the lowest MT ic50 binding
 score of all chosen prediction methods). median: Use
 the median MT Score (i.e. the median MT ic50 binding
 score of all chosen prediction methods). (default:
 median)

This filter picks the top epitope for a variant. Epitopes with the same
Chromosome - Start - Stop - Reference - Variant are identified as coming from
the same variant.

In order to account for different splice sites among the transcripts of a
variant that would lead to different peptides, this filter also takes into
account the different transcripts returned by Integrate-Neo/AGFusion and will return
the top epitope for all transcripts if they are non-identical. If the
resulting list of top epitopes for the transcripts of a variant is identical,
the epitope for the transcript with the lowest Ensembl ID is returned.

By default the
--top-score-metric option is set to median which will apply this
filter to the Median MT Score column and pick the epitope with the lowest
median mutant ic50 score for each variant. If the --top-score-metric
option is set to lowest, the Best MT Score column is instead used to
make this determination.

If there are multiple top epitopes for a variant with the same ic50 score, the
first one is chosen.

 [image: pVACfuse logo]

Additional Commands

To make using pVACfuse easier, several convenience methods are included in the package.

Download Example Data

usage: pvacfuse download_example_data [-h] destination_directory

positional arguments:
 destination_directory
 Directory for downloading example data

optional arguments:
 -h, --help show this help message and exit

List Valid Alleles

usage: pvacfuse valid_alleles [-h]
 [-p {MHCflurry,MHCnuggetsI,MHCnuggetsII,NNalign,NetMHC,NetMHCIIpan,NetMHCcons,NetMHCpan,PickPocket,SMM,SMMPMBEC,SMMalign}]

optional arguments:
 -h, --help show this help message and exit
 -p {MHCflurry,MHCnuggetsI,MHCnuggetsII,NNalign,NetMHC,NetMHCIIpan,NetMHCcons,NetMHCpan,PickPocket,SMM,SMMPMBEC,SMMalign}, --prediction-algorithm {MHCflurry,MHCnuggetsI,MHCnuggetsII,NNalign,NetMHC,NetMHCIIpan,NetMHCcons,NetMHCpan,PickPocket,SMM,SMMPMBEC,SMMalign}
 The epitope prediction algorithms to use (default:
 None)

List Allele-Specific Cutoffs

usage: pvacfuse allele_specific_cutoffs [-h] [-a ALLELE]

optional arguments:
 -h, --help show this help message and exit
 -a ALLELE, --allele ALLELE
 The allele to use (default: None)

 [image: pVACfuse logo]

Optional Downstream Analysis Tools

Generate Protein Fasta

usage: pvacfuse [-h]
 {run,binding_filter,top_score_filter,generate_protein_fasta,valid_alleles,allele_specific_cutoffs,download_example_data}
 ...

positional arguments:
 {run,binding_filter,top_score_filter,generate_protein_fasta,valid_alleles,allele_specific_cutoffs,download_example_data}
 run Runs the pVACfuse pipeline
 binding_filter Filters variants processed by IEDB by binding score
 top_score_filter Pick the best neoepitope for each variant
 generate_protein_fasta
 Generate an annotated fasta file from Integrate-Neo or
 AGFusion output
 valid_alleles Shows a list of valid allele names
 allele_specific_cutoffs
 Show the allele specific cutoffs
 download_example_data
 Downloads example input and output files

optional arguments:
 -h, --help show this help message and exit
Error: No command specified

This tool will extract protein sequences surrounding fusion variant in an by parsing Integrate-Neo or AGFusion
output. One use case for this tool is to help select long peptides that contain short neoepitope
candidates. For example, if pvacfuse was run to predict nonamers (9-mers) that are good binders and
the user wishes to select long peptide (e.g. 24-mer) sequences that contain the nonamer for synthesis
or encoding in a DNA vector. The fusion position will be centered in the protein sequence returned (if possible).
If the fusion causes a frameshift, the full downstream protein sequence will be returned unless the user specifies otherwise
as described above.

 [image: pVACvector logo]

pVACvector

pVACvector is designed to aid specifically in the construction of
DNA vector based personalized cancer vaccines. It takes as input either a pVACseq output
tsv file or a FASTA file containing peptide sequences and returns a peptide ordering that
minimizes the effects of junctional epitopes (that may create novel peptides)
between the sequences. It does this by using the core pVACseq services to
predict the binding scores for each junctional peptide separated by a spacer amino acid
sequence that may help to eliminate junctional epitopes. The list of spacers
to be tested is specified using the --spacers parameter. Peptide combinations without a
spacer can be tested by including None in the list of spacers.

Peptide junctions are tested with
each spacer in the order that they are specified. If a valid peptide ordering
is found that doesn’t result in any well-binding junction epitopes, that
ordering is returned. No other spacer are tested, even if they could
potentially result in better junction scores. This reduces runtime.
If no valid path is found, the next spacer in the input list is tested.
The default spacer amino acid sequences are “None”, “AAY”, “HHHH”, “GGS”, “GPGPG”, “HHAA”,
“AAL”, “HH”, “HHC”, “HHH”, “HHHD”, “HHL”, “HHHC”.

The final vaccine ordering is
achieved through a simulated annealing procedure that returns a near-optimal
solution, when one exists.

	Prerequisites

	Getting Started

	Usage

	Additional Commands
	Creating Vector Visualization

	Download Example Data

	List Valid Alleles

	List Allele-Specific Cutoffs

	Output Files

 [image: pVACvector logo]

Prerequisites

There are two options for the input file when running the pVACvector tool:

	A FASTA file. This file contains protein sequences of candidate neoepitopes
to use for vector design.

	A pVACseq output TSV. This file has been filtered to include
only the neoepitopes to use for vector design. If this file type is
used, it is also necessary to provide the original VCF used in the
pVACseq run via the --input_vcf option. Output TSVs from MHC Class I and
Class II pVACseq results can be combined into one by concatenating the two files and
removing the duplicate header line.

Note that if you supply a FASTA file of peptides, these peptides will be used directly in the
analysis and used in the final output. However, if you use a pvacseq TSV and variants VCF
then the length of peptides extracted for junctional epitope testing and reporting in your output
will be determined by the --input-n-mer option.

 [image: pVACvector logo]

Getting Started

pVACvector provides a set of example data to show the expected input and output files. You can download the data set by running the pvacfuse download_example_data command.

There are two option as to how to run pVACvector depending on the input file
type used. You can either use a pVACseq output TSV of neoepitopes or a FASTA
file of peptide sequences.

Here is an example of how to run pVACvector with a pVACseq output TSV:

pvacvector run \
<example_data_dir>/input.tsv \
Test \
HLA-A*02:01,HLA-B*35:01,DRB1*11:01 \
MHCflurry MHCnuggetsI MHCnuggetsII NNalign NetMHC PickPocket SMM SMMPMBEC SMMalign \
<output_dir> \
-e 8,9,10 \
-v <example_data_dir>/input.vcf

In this example pVACvector is run with an input FASTA file:

pvacvector run \
<example_data_dir>/input.fa \
Test \
HLA-A*02:01,HLA-B*35:01,DRB1*11:01 \
MHCflurry MHCnuggetsI MHCnuggetsII NNalign NetMHC PickPocket SMM SMMPMBEC SMMalign \
<output_dir> \
-e 8,9,10

A detailed description of all command options can be found on the Usage page.

 [image: pVACvector logo]

Usage

Warning

Using a local IEDB installation is strongly recommended for larger datasets
or when the making predictions for many alleles, epitope lengths, or
prediction algorithms. More information on how to install IEDB locally can
be found on the Installation page.

It may be necessary to explore the parameter space a bit when running pVACvector.
As binding predictions for some sites vary substantially across algorithms, the
most conservative settings may result in no valid paths, often due to one
“outlier” prediction. Carefully choosing which predictors to run may help
ameliorate this issue as well.

In general, setting a lower binding threshold (e.g., 500nM) and using the median
binding value (--top-score-metric median) will lead to greater possibility
of a design, while more conservative settings of 1000nM and lowest/best binding
value (--top-score-metric lowest) will give more confidence that there are
no junctional neoepitopes.

Our current recommendation is to run pVACvector several different ways, and
choose the path resulting from the most conservative set of parameters.

usage: pvacvector run [-h] [-e EPITOPE_LENGTH]
 [--iedb-install-directory IEDB_INSTALL_DIRECTORY]
 [-b BINDING_THRESHOLD]
 [--allele-specific-binding-thresholds]
 [-m {lowest,median}] [-r IEDB_RETRIES] [-k]
 [-t N_THREADS] [-v INPUT_VCF] [-n INPUT_N_MER]
 [--spacers SPACERS] [--max-clip-length MAX_CLIP_LENGTH]
 input_file sample_name allele
 {MHCflurry,MHCnuggetsI,MHCnuggetsII,NNalign,NetMHC,NetMHCIIpan,NetMHCcons,NetMHCpan,PickPocket,SMM,SMMPMBEC,SMMalign}
 [{MHCflurry,MHCnuggetsI,MHCnuggetsII,NNalign,NetMHC,NetMHCIIpan,NetMHCcons,NetMHCpan,PickPocket,SMM,SMMPMBEC,SMMalign} ...]
 output_dir

positional arguments:
 input_file A .fa file with peptides or a pVACseq .tsv file with
 epitopes to use for vector design.
 sample_name The name of the sample being processed. This will be
 used as a prefix for output files.
 allele Name of the allele to use for epitope prediction.
 Multiple alleles can be specified using a comma-
 separated list. For a list of available alleles, use:
 `pvacseq valid_alleles`.
 {MHCflurry,MHCnuggetsI,MHCnuggetsII,NNalign,NetMHC,NetMHCIIpan,NetMHCcons,NetMHCpan,PickPocket,SMM,SMMPMBEC,SMMalign}
 The epitope prediction algorithms to use. Multiple
 prediction algorithms can be specified, separated by
 spaces.
 output_dir The directory for writing all result files.

optional arguments:
 -h, --help show this help message and exit
 -e EPITOPE_LENGTH, --epitope-length EPITOPE_LENGTH
 Length of subpeptides (neoepitopes) to predict.
 Multiple epitope lengths can be specified using a
 comma-separated list. Typical epitope lengths vary
 between 8-11. Required for Class I prediction
 algorithms. (default: None)
 --iedb-install-directory IEDB_INSTALL_DIRECTORY
 Directory that contains the local installation of IEDB
 MHC I and/or MHC II. (default: None)
 -b BINDING_THRESHOLD, --binding-threshold BINDING_THRESHOLD
 Report only epitopes where the mutant allele has ic50
 binding scores below this value. (default: 500)
 --allele-specific-binding-thresholds
 Use allele-specific binding thresholds. To print the
 allele-specific binding thresholds run `pvacvector
 allele_specific_cutoffs`. If an allele does not have a
 special threshold value, the `--binding-threshold`
 value will be used. (default: False)
 -m {lowest,median}, --top-score-metric {lowest,median}
 The ic50 scoring metric to use when filtering epitopes
 by binding-threshold or minimum fold change. lowest:
 Use the best MT Score and Corresponding Fold Change
 (i.e. the lowest MT ic50 binding score and
 corresponding fold change of all chosen prediction
 methods). median: Use the median MT Score and Median
 Fold Change (i.e. the median MT ic50 binding score and
 fold change of all chosen prediction methods).
 (default: median)
 -r IEDB_RETRIES, --iedb-retries IEDB_RETRIES
 Number of retries when making requests to the IEDB
 RESTful web interface. Must be less than or equal to
 100. (default: 5)
 -k, --keep-tmp-files Keep intermediate output files. This might be useful
 for debugging purposes. (default: False)
 -t N_THREADS, --n-threads N_THREADS
 Number of threads to use for parallelizing peptide-MHC
 binding prediction calls. (default: 1)
 -v INPUT_VCF, --input_vcf INPUT_VCF
 Path to original pVACseq input VCF file. Required if
 input file is a pVACseq TSV. (default: None)
 -n INPUT_N_MER, --input-n-mer INPUT_N_MER
 Length of the peptide sequence to use when creating
 the FASTA from the pVACseq TSV. (default: 25)
 --spacers SPACERS Comma-separated list of spacers to use for testing
 junction epitopes. Include None to test junctions
 without spacers. Peptide combinations will be tested
 with each spacer in the order specified. (default: Non
 e,AAY,HHHH,GGS,GPGPG,HHAA,AAL,HH,HHC,HHH,HHHD,HHL,HHHC
)
 --max-clip-length MAX_CLIP_LENGTH
 Number of amino acids to permit clipping from the
 start and/or end of peptides in order to test novel
 junction epitopes when the first pass on the full
 peptide fails. (default: 3)

 [image: pVACvector logo]

Additional Commands

To make using pVACvector easier, several convenience methods are included in the package.

Creating Vector Visualization

By default, pVACvector will create a visualization of the vector design
result. For this to happen, the DISPLAY environment variable has to be set.
This is often not the case, for example, when running pVACvector on a compute
cluster. We provide this convenience method to create the visualization
graphic from a successful pVACvector result FASTA file on any machine that has
the DISPLAY environment variable set.

usage: pvacvector visualize [-h] [-s SPACERS] input_fasta output_directory

positional arguments:
 input_fasta A pVACvector result FASTA file to visualize
 output_directory The output directory to save the visualization graphic
 to

optional arguments:
 -h, --help show this help message and exit
 -s SPACERS, --spacers SPACERS
 Comma-separated list of peptides that are used as
 spacers in the pVACvector result fasta file (default:
 AAY,HHHH,GGS,GPGPG,HHAA,AAL,HH,HHC,HHH,HHHD,HHL,HHHC)

Download Example Data

usage: pvacvector download_example_data [-h] destination_directory

positional arguments:
 destination_directory
 Directory for downloading example data

optional arguments:
 -h, --help show this help message and exit

List Valid Alleles

usage: pvacvector valid_alleles [-h]
 [-p {MHCflurry,MHCnuggetsI,MHCnuggetsII,NNalign,NetMHC,NetMHCIIpan,NetMHCcons,NetMHCpan,PickPocket,SMM,SMMPMBEC,SMMalign}]

optional arguments:
 -h, --help show this help message and exit
 -p {MHCflurry,MHCnuggetsI,MHCnuggetsII,NNalign,NetMHC,NetMHCIIpan,NetMHCcons,NetMHCpan,PickPocket,SMM,SMMPMBEC,SMMalign}, --prediction-algorithm {MHCflurry,MHCnuggetsI,MHCnuggetsII,NNalign,NetMHC,NetMHCIIpan,NetMHCcons,NetMHCpan,PickPocket,SMM,SMMPMBEC,SMMalign}
 The epitope prediction algorithms to use (default:
 None)

List Allele-Specific Cutoffs

usage: pvacvector allele_specific_cutoffs [-h] [-a ALLELE]

optional arguments:
 -h, --help show this help message and exit
 -a ALLELE, --allele ALLELE
 The allele to use (default: None)

 [image: pVACvector logo]

Output Files

	File Name

	Description

	vector_input.fa (optional)

	An intermediate file with vaccine peptide sequences created from the epitopes in a pVACseq output file.

	<sample_name>_results.fa

	The final output file with the peptide sequences and best spacers in the optimal order.

	vector.jpg

	A JPEG visualization of the above result.

[image: pVACvector result visualization example]
pVACvector result visualization example

 [image: pVACviz logo]

pVACviz

pVACviz is a browser-based, graphical user interface for the pVACtools command line tools.
It currently supports starting and managing pVACseq runs as well
as visualizing the results of your runs.

	Installation
	MHCflurry

	PostgreSQL

	Running pVACviz

	pVACapi Directories
	/archive

	/export

	/input

	/visualize

	/.processes

	/.tmp

	Starting Processes
	Populating and Submitting the Start Form

	Notes

	Managing Processes
	Displaying All Managed Processes

	Displaying Process Details

	Process Actions

	Visualizing Processes
	Visualizing Completed Processes

	Visualizing pVACseq Results Files

	Scatterplot Visualization

	Axis Columns

	Filters

	Data Table

	Exporting Visualization Data

	pVACapi Troubleshotting

Installation

pVACviz is part of the pVACtools package. To install pVACtools, execute the following command on your Terminal:

pip install pvactools

More detailed installation instructions can be found here. Note that the following are the bare minimum you
need to run pVACviz. Most users will probably just want to complete the full pvactools install as described here.
That includes pVACviz along with all the other components, local installation of IEDB, etc. You can also use the pvactools docker
container which contains all tools and their dependencies (including those for pVACviz).

MHCflurry

When installing pVACtools for the first time, you will need to manually
download the MHCflurry dataset:

mhcflurry-downloads fetch

PostgreSQL

pVACviz requires a Postgres database. To install Postgres follow
the installation instructions [http://postgresguide.com/setup/install.html].

Note

On Debian-based Linux distributions version Postgres V9.6 or lower is
required.

 [image: pVACviz logo]

Running pVACviz

To run pVACviz you first need to start pVACapi, which is used to communicate
between the user interface and the command line tool. pVACapi can be started
by executing the following command on the command line:

pvacapi

Depending on the number of completed and running processes it must check, the API may take several seconds to start up. After pVACapi has started, launch pVACviz in a separate terminal window by executing the following command on the command line:

pvacviz

This command will start a HTTP server that provides the web client files and assets, and opens up the client in the default web browser specified by your operating system. In some cases, pvacviz will not be able to automatically open the web browser. If no browser launches after starting pvacviz, you will need to manually load the URL, http://localhost:4200/, in a Firefox, Chrome, or Safari browser. If you are running pVACviz
on a public instance, to access it over the web you will need to replace localhost with the correct IP address (or associated domain name).

 [image: pVACviz logo]

pVACapi Directories

[image: pVACapi directories]
pVACapi directories

pVACviz, in order to provide all its features, communicates with a pVACtools component called pVACapi. pVACapi serves as an interface between pVACviz and the pVACseq pipeline proceses, launching pVACseq processes, managing them as they execute, and generating the visualizations that pVACviz displays.

Upon installation, pVACapi creates several directories in the user’s home directory in ~/pVAC-Seq/. These directories are used to hold input files to pVACseq processes, results files for visualization, archives, and exported projects. Additionally two hidden directories controlled by pVACapi are used to store files related to managing and running processes.

/archive

pVACviz provides an archive function within its Manage section. When processes are archived they are placed in this archive folder.

/export

pVACviz provides an export function within its Manage section. When processes are exported they are placed in this export folder.

/input

The pVACviz Start form has Input VCF and Phased Proximal Variant fields that accept VCF files. The selectors for these fields list all relevant files placed within the ~/input directory. You may sort these files into directories of any depth and the selectors will keep them grouped by directory.

/visualize

The Visualize feature allows users to visualize any pVACseq result TSV files. Any pVACseq TSV file placed in this /visualize folder will be displayed on the Visualize page in the right column. Directory structures will be preserved so that users may group files in whatever manner they wish.

/.processes

This is a hidden directory used to store all files related to processes that pVACapi is actively managing. These are the processes listed on the Manage page. You shouldn’t touch anything in this directory. Instead, to gain access to these files use the Export or Archive function available in the pVACviz Manage section.

/.tmp

This hidden directory is used by pVACapi to store temporary artifacts of the pVACseq pipeline. Editing or deleting anything in this directory may disrupt running pVACseq processes.

 [image: pVACviz logo]

Starting Processes

pVACviz provides a helpful form for specifying all of the parameters for a pVACseq process, as an alternative to constructing these commands and executing them via the command line.

[image: pVACviz start form]
pVACviz start form

Populating and Submitting the Start Form

The form is divided into two sections: required and optional parameters. To be submitted, all required fields must be filled and validated. Optional parameters are pre-filled with sensible defaults - the same defaults that would be applied when submitting processes via the command line.

The form provides feedback as to which fields remain to be filled and validated, both with a red highlight and message around fields in question, and at the bottom of the form with a list of incomplete or invalid fields.

Once all the required form fields are completed with valid values, the Submit Process button is activated. Clicking on this button will submit the process to pVACapi. Clicking the Reset button will restore the form to its initial pristine state.

Notes

	The Input VCF and Phased Proximal Variant VCF fields require the selection of VCF files. These selectors list all VCF files within the /input folder found within the ~/pVACseq directory located in the user’s home directory.

	The alleles selector only shows alleles relevant to selected prediction algorithms. Choose prediction algorithms to enable and populate the alleles selector.

 [image: pVACviz logo]

Managing Processes

With its management interface users may manage processes launched with pVACviz. The Management section of the application is comprised of two pages: a list page that shows all the currently managed processes; and a detail page that displays all of the details of an individual process.

Displaying All Managed Processes

When you click on the Manage link in the sidebar you will be presented with a table containing a paged list of all currently managed processes.

[image: pVACviz Process List on Manage page]
pVACviz Process List on Manage page

The process table displays each Process’ ID, Status, Sample Name, and Input File and provides a link to the detailed view of each process. A paging interface allows you to page through all running processes.

Each row provides an actions popup menu allowing you to stop, restart, export, archive, and delete processes. Clicking on the three dots at the left side of every row will display a menu of actions that can be applied to the process on that row. See below for a table detailing the actions available to you.

Displaying Process Details

Clicking on the Details link from the main Manage page in a process row displays the Process Detail page shown below. On this page you may view all the details of a process: its log, pVACseq command line arguments, and associated files. Any visualizable files will be shown with a Visualize link which, when clicked, will load the visualization for that results file.

All commands available in the process table are also available here in the header: stop, restart, export, archive and delete. See the table below for more details on these actions.

[image: pVACviz process detail display]
pVACviz process detail display

Process Actions

Both the process list table and process detail page provide actions for users to manage pVACseq processes. The process table makes these actions available in its action menu, displayed by clicking on the three dots on the left of every row. The process detail page provides buttons in its header to invoke process actions.

	Action

	Description

	Stop

	Stops a running process. Note that a process must be stopped before it can be restarted, exported, archived, or deleted.

	Restart

	Restarts a running process. Note that all progress will be lost; pVACseq does not yet restart processes at the point they were stopped.

	Export

	Exports all a process’ config, log, intermediate, and final results files (if any) to the /export directory. The process will remain in the set of pVACapi managed processes.

	Archive

	Similar to Export, Archive moves all process config, log, intermediate, and final results files (if any) to the /archive directory. Unlike Export, Archive removes the process from pVACapi’s set of managed processes.

	Delete

	Deletes all process files and directories and removes it from pVACapi’s set of managed proceses. Be careful! This action is not undoable.

 [image: pVACviz logo]

Visualizing Processes

pVACviz provides a results visualization for exploring the results of pVACseq processes. It is able to visualize both the results from processes launched from pVACviz and results from any pVACseq process.

Visualizing Completed Processes

You may view visualizations of completed pVACseq processes launched from the pVACviz Start form from two locations within the application.
The Manage section includes a process detail page, reachable by clicking on the Details link on the right side of rows in the process table. On the process detail page, the bottom right card contains a list of all files produced by the pVACseq process. Visualizable files will display a Visualize button that when clicked will load the visualization for that file.

Additionally, on the Visualize main page in the right hand column, all processes currently managed by pVACapi will be listed with their visualizable files. Clicking on a file will load the visualization for that file.

[image: pVACviz page showing all visualizable files]
pVACviz page showing all visualizable files

Visualizing pVACseq Results Files

Any final results TSV file produced by pVACseq processes - whether launched via pVACviz or the command line - may be visualized with pVACviz. You may drop any file or folder in pVACapi’s /visualize directory, and it will scan it for visualizable files. These files will then be listed on in the right column of the main Vizualize page. Click on any of the listed pages to launch the visualization.

Scatterplot Visualization

On the visualization’s scatterplot are placed all of the data points contained in the tsv results file, one dot per row. A set of tools along the side of the visualization allow you to select and manipulate the plot in various ways.

[image: pVACviz scatterplot visualization]
pVACviz scatterplot visualization

These icons toggle the following functions:

	Icon

	Name

	Function

	[image: pan]

	Pan

	The pan tool allows the user to pan the plot by left-dragging a mouse or dragging a finger across the plot region.

	[image: box_zoom]

	Box Zoom

	The box zoom tool allows the user to define a rectangular region to zoom the plot bounds too, by left-dragging a mouse, or dragging a finger across the plot area.

	[image: wheel_zoom]

	Wheel Zoom

	The wheel zoom tool will zoom the plot in and out, centered on the current mouse location. It will respect any min and max values and ranges preventing zooming in and out beyond these.

	[image: tap]

	Tap

	The tap selection tool allows the user to select single points by clicking a left mouse button, or tapping with a finger.

	[image: save]

	Save

	The save tool pops up a modal dialog that allows the user to save a PNG image of the plot.

	[image: reset]

	Reset

	The reset tool will restore the plot ranges to their original values.

	[image: hover]

	Hover

	The hover tool is a passive inspector tool. It is generally on at all times, but can be configured in the inspector’s menu associated with the toolbar.

Axis Columns

To the left of the scatterplot display are a set of controls that allow you to set the X and Y axis for the scatterplot and filter the plot’s source data. The top two selectors allow you to choose any column of the result set to serve as the X/Y axis.

Filters

You may filter the source data using filters positioned beneath the axis column selectors. By default, points with null X or Y values are filtered out; you may toggle this filter by clicking the Show button. Beneath the show button are displayed a set of sliders that allow you to set min/max values for columns in the result set. Note that the visualization will not show sliders for columns that contain no data.

Data Table

Beneath the plot and filters you will find a datatable linked to both the filters and scatterplot points. Selecting any points in the plot will highlight the corresponsing rows in the data tables. The filters also affect the data table rows - any rows excluded by the filters will also be excluded from the datatable.

Exporting Visualization Data

Two buttons are provided for CSV export of the plot data. The ‘Download’ button will provide you with a CSV file that contains all of the data provdided to the plot - including filtered rows and rows with null X/Y coordinates. The ‘Download Selected’ button provides you with a CSV containing only the filtered/selected rows from the plot and datatable.

 [image: pVACviz logo]

pVACapi Troubleshotting

It is possible for pVACapi to get into a state where the cached data contains
conflicting information to the actual process outputs. This can be resolved by
calling the pvacapi clear_cache function on the command line.

Installation

pVACtools is written for Linux but some users have been able to run it successfully on Mac OS X. If you are using Windows you will need to set up a Linux environment, for example by setting up a virtual machine.

pVACtools requires Python 3.5., 3.6, or 3.7. Before running any installation steps, check the Python version installed on your system:

python -V

If you don’t have Python 3.7 installed, we recommend using Conda [https://conda.io/projects/conda/en/latest/user-guide/install/index.html] to emulate a Python 3.7 environment. We’ve encountered problems with users that already have Python 2.x installed when they also try to install Python 3.7. The defaults will not be set correctly in that case. If you already have Python 2.x installed we strongly recommmend using Conda instead of installing Python 3.7 locally.

Once you have set up your Python 3.7 environment correctly you can use pip to install pVACtools. Make sure you have pip installed. pip is generally included in python distributions, but may need to be upgraded before use. See the instructions [https://packaging.python.org/en/latest/installing/#install-pip-setuptools-and-wheel] for installing or upgrading pip.

After you have pip installed, type the following command on your Terminal:

pip install pvactools

You can check that pvactools has been installed under the default environment by listing all installed packages:

pip list

pip will fetch and install pVACtools and its dependencies for you. After installing, each tool of the pVACtools suite is available in its own command line tree directly from the Terminal.

If you have an old version of pVACtools installed you might want to consider upgrading to the latest version:

pip install pvactools --upgrade

Installing IEDB binding prediction tools (strongly recommended)

Warning

Using a local IEDB installation is strongly recommended for larger datasets
or when the making predictions for many alleles, epitope lengths, or
prediction algorithms.

Warning

The IEDB binding prediction tools are only compatible with Linux.

You may create a local install of the IEDB binding prediction tools by first downloading the archives for class I [http://tools.iedb.org/mhci/download/] and class II [http://tools.iedb.org/mhcii/download/] from the IEDB website. If using both the Class I and the Class II tools, they both need to be installed into the same parent directory. Note that we have tested pVACtools with the versions of IEDB class I and II listed below. Using a different version may cause problems.

Important

By using the IEDB software, you are consenting to be bound by and become a
“Licensee” for the use of IEDB tools and are consenting to the terms and
conditions of the Non-Profit Open Software License (“Non-Profit OSL”) version 3.0.

Please read these two license agreements here [http://tools.iedb.org/mhci/download/]
before proceeding. If you do not agree to all of the terms of these two agreements,
you must not install or use the product. Companies (for-profit entities) interested
in downloading the command-line versions of the IEDB tools or running the entire analysis
resource locally, should contact IEDB (license@iedb.org) for details on licensing options.

Citing the IEDB

All publications or presentations of data generated by use of the IEDB
Resource Analysis tools should include citations to the relevant reference(s),
found here [http://tools.iedb.org/mhci/reference/].

Note

Using a local IEDB install with pVACtools requires conda.

pVACtools is written in python 3 and IEDB is only compatible with python
2.7. Because of this version mismatch, the pVACtools modules will create a
custom python 2.7 environment and execute IEDB inside of it. This requires
conda.

MHC Class I

Download the archives for class I [http://tools.iedb.org/mhci/download/] and unpack them.

apt-get update && apt-get install -y tcsh gawk
wget https://downloads.iedb.org/tools/mhci/2.19.2/IEDB_MHC_I-2.19.2.tar.gz
tar -zxvf IEDB_MHC_I-2.19.2.tar.gz
cd mhc_i
./configure

Note

Running the configure script requires a Python 2 environment. If you are currently emulating a Python 3 environment with Conda you will need to run source deactivate before executing the configure script.

MHC Class II

Download the archives for class II [http://tools.iedb.org/mhcii/download/] and unpack them.

apt-get update && apt-get install -y tcsh gawk
wget https://downloads.iedb.org/tools/mhcii/2.17.6/IEDB_MHC_II-2.17.6.tar.gz
tar -zxvf IEDB_MHC_II-2.17.6.tar.gz
cd mhc_ii
./configure.py

On older versions of the IEDB software, you might need to update some paths in the configure scripts to use relative paths. Open the configure.py file and update the lines that set the smm and nn variables to use relative paths like so:

smm = re.compile(curDir + "/netMHCII-1.1")
nn = re.compile(curDir + "/netMHCII-2.2")

Then run the configure script.

./configure.py

Note

Running the configure script requires a Python 2 environment. If you are currently emulating a Python 3 environment with Conda you will need to run source deactivate before executing the configure script.

Installing MHCflurry

If you wish to run the MHCflurry prediction algorithm, you will need to
install the mhcflurry python package on your system. This package is set
as a dependency for the pvactools package so it should be installed
automatically when you download or upgrade the pvactools package. You can
install it manually by running:

pip install mhcflurry

Note

The mhcflurry package needs to be installed in the same python 3 conda
environment as the pvactools package.

Next, you will need to download the download the MHCflurry datasets and trained models:

mhcflurry-downloads fetch

Note

The mhcflurry-downloads fetch command will need to be run manually, even
if the mhcflurry package was already installed automatically as a
dependency with the pvactools package.

You can check that the mhcflurry package was installed successfully by running:

mhcflurry-predict -h

This should pull up the help page for the MHCflurry predictor.

Please note that MHCflurry depends on tensorflow, which will automatically be installed as a
dependency to the mhcflurry package. Newer versions of tensorflow might not be compatible
with older CPUs. In that case you will see a core dump failure. Downgrading
tensorflow manually to version 1.5.0 should solve this problem:

pip install tensorflow==1.5.0

Installing MHCnuggets

If you wish to run the MHCnuggets prediction algorithm, you will need to
install the mhcnuggets python package on your system. This package is set
as a dependency for the pvactools package so it should be installed
automatically when you download or upgrade the pvactools package. You can
install it manually by running:

pip install mhcnuggets

Note

The mhcnuggets package needs to be installed in the same python 3 conda
environment as the pvactools package.

You can check that the mhcnuggets package was installed successfully by running:

pip show mhcnuggets

This should show information about the mhcnuggets package.

Please note that MHCnuggets depends on tensorflow, which will automatically be installed as a
dependency to the mhcnuggets package. Newer versions of tensorflow might not be compatible
with older CPUs. In that case you will see a core dump failure. Downgrading
tensorflow manually to version 1.5.0 should solve this problem:

pip install tensorflow==1.5.0

PostgreSQL

pVACviz and pVACapi require a Postgres database. To install Postgres follow
the installation instructions [http://postgresguide.com/setup/install.html].

Note

On Debian-based Linux distributions version Postgres V9.6 or lower is
required.

Docker and CWL

A Docker container for pVACtools is available on DockerHub using the
griffithlab/pvactools [https://hub.docker.com/r/griffithlab/pvactools/] repo. This Docker
container includes installations of the IEDB class I and class II tools
at /opt/iedb (--iedb-install-directory /opt/iedb).

An example on how to run pVACseq using Docker can be found on the Getting Started page.

Common Workflow Language (CWL) tool wrappers for pVACseq, pVACfuse, and pVACvector can be downloaded
using the pvactools download_cwls command.

Download CWL tool wrappers

usage: pvactools download_cwls [-h] destination_directory

positional arguments:
 destination_directory
 Directory for downloading CWLs

optional arguments:
 -h, --help show this help message and exit

Tools Used By pVACtools

IEDB (Immune Epitope Database)

	Website: https://www.iedb.org

	Citation: Vita R, Mahajan S, Overton JA, Dhanda SK, Martini S,
Cantrell JR, Wheeler DK, Sette A, Peters B. The Immune Epitope
Database (IEDB): 2018 update. Nucleic Acids Res. 2018 Oct 24.
doi: 10.1093/nar/gky1006. [Epub ahead
of print] PubMed PMID: 30357391 [https://www.ncbi.nlm.nih.gov/pubmed/30357391].

	License: Non-Profit OSL 3.0

By using the IEDB software, you are consenting to be bound by and become a
“Licensee” for the use of IEDB tools and are consenting to the terms and
conditions of the Non-Profit Open Software License (“Non-Profit OSL”) version 3.0.

Please read these two license agreements here [http://tools.iedb.org/mhci/download/]
before proceeding. If you do not agree to all of the terms of these two agreements,
you must not install or use the product. Companies (for-profit entities) interested
in downloading the command-line versions of the IEDB tools or running the entire analysis
resource locally, should contact IEDB (license@iedb.org) for details on licensing options.

MHCflurry

	Website: http://openvax.github.io/mhcflurry/

	GitHub: https://github.com/openvax/mhcflurry

	Citation: T. J. O’Donnell, A. Rubinsteyn, M. Bonsack, A. B. Riemer,
U. Laserson, and J. Hammerbacher, “MHCflurry: Open-Source Class I
MHC Binding Affinity Prediction,” Cell Systems, 2018.
doi: https://doi.org/10.1016/j.cels.2018.05.014.
PubMed PMID: 29960884 [https://www.ncbi.nlm.nih.gov/pubmed/29960884].

	License: Apache License 2.0 [https://github.com/openvax/mhcflurry/blob/master/LICENSE]

MHCnuggets

	Website: https://karchinlab.org/apps/appMHCnuggets.html

	GitHub: https://github.com/KarchinLab/mhcnuggets-2.0

	Citation: Bhattacharya R, Sivakumar A, Tokheim C, Beleva Guthrie V,
Anagnostou V, Velculescu VE, Karchin R (2017) Evaluation of machine
learning methods to predict peptide binding to MHC Class I proteins.
Submitted [bioRxiv preprint [https://www.biorxiv.org/content/early/2017/07/27/154757]].

	License: Apache License 2.0 [https://github.com/KarchinLab/mhcnuggets-2.0/blob/master/LICENSE]

NetChop

	Website: http://www.cbs.dtu.dk/services/NetChop/

	Citation: The role of the proteasome in generating cytotoxic T cell epitopes: Insights obtained from improved predictions of proteasomal cleavage. M. Nielsen, C. Lundegaard, O. Lund, and C. Kesmir. Immunogenetics., 57(1-2):33-41, 2005.
PubMed PMID: 11983929 [https://www.ncbi.nlm.nih.gov/pubmed/11983929].

	License: Academic License [http://www.cbs.dtu.dk/cgi-bin/nph-sw_request?netchop]

NetMHCstabpan

	Website: http://www.cbs.dtu.dk/services/NetMHCstabpan/

	Citation: Pan-specific prediction of peptide-MHC-I complex stability; a correlate of T cell immunogenicity. Michael Rasmussen, Emilio Fenoy, Mikkel Harndahl, Anne Bregnballe Kristensen, Ida Kallehauge Nielsen, Morten Nielsen, Soren Buus. J Immunol. 2016 Aug 15;197(4):1517-24.
doi: https://doi.org/10.4049/jimmunol.1600582.
PubMed PMID: 27402703 [https://www.ncbi.nlm.nih.gov/pubmed/27402703].

	License: Academic License [http://www.cbs.dtu.dk/cgi-bin/nph-sw_request?netMHCstabpan]

Vaxrank

	Website: https://github.com/openvax/vaxrank

	Citation: Rubinsteyn, A., Hodes, I., Kodysh, J., & Hammerbacher, J. (2017). Vaxrank: a computational tool for designing personalized cancer vaccines.
bioRxiv, 142919 [https://www.biorxiv.org/content/10.1101/142919v2].

	License: Apache License 2.0 [https://github.com/openvax/vaxrank/blob/master/LICENSE]

Frequently Asked Questions

How is pVACtools licensed?

pVACtools is licensed under NPOSL-3.0 [http://opensource.org/licenses/NPOSL-3.0].

Where can I get help?

Bug reports or feature requests can be submitted on the pVACtools Github page [https://github.com/griffithlab/pVACtools/issues]. You may also contact us by email at help@pvactools.org.

How do I cite pVACtools?

Jasreet Hundal+, Susanna Kiwala+, Joshua McMichael, Christopher A Miller,
Alexander T Wollam, Huiming Xia, Connor J Liu, Sidi Zhao, Yang-Yang Feng,
Aaron P Graubert, Amber Z Wollam, Jonas Neichin, Megan Neveau, Jason Walker,
William E Gillanders, Elaine R Mardis, Obi L Griffith, Malachi Griffith.
pVACtools: a computational toolkit to select and visualize cancer
neoantigens [https://doi.org/10.1101/501817].
bioRxiv 501817; doi: https://doi.org/10.1101/501817. (+)equal contribution.

Jasreet Hundal, Susanna Kiwala, Yang-Yang Feng, Connor J. Liu, Ramaswamy Govindan,
William C. Chapman, Ravindra Uppaluri, S. Joshua Swamidass, Obi L. Griffith, Elaine R. Mardis,
and Malachi Griffith. Accounting for proximal variants improves neoantigen prediction [https://www.nature.com/articles/s41588-018-0283-9].
Nature Genetics. 2018, DOI: 10.1038/s41588-018-0283-9. PMID: 30510237 [https://www.ncbi.nlm.nih.gov/pubmed/30510237].

Jasreet Hundal, Beatriz M. Carreno, Allegra A. Petti, Gerald P. Linette, Obi
L. Griffith, Elaine R. Mardis, and Malachi Griffith. pVACseq: A genome-guided
in silico approach to identifying tumor neoantigens [http://www.genomemedicine.com/content/8/1/11]. Genome Medicine. 2016,
8:11, DOI: 10.1186/s13073-016-0264-5. PMID: 26825632 [http://www.ncbi.nlm.nih.gov/pubmed/26825632].

Release Notes

	Version 1.0
	1.0.0

	1.0.1

	1.0.2

	1.0.3

	1.0.4

	1.0.5

	1.0.6

	1.0.7

	1.0.8

	Version 1.1
	1.1.0

	1.1.1

	1.1.2

	1.1.3

	1.1.4

	1.1.5

	Version 1.2
	1.2.0

	Version 1.3
	1.3.0

	1.3.1

	1.3.2

	1.3.3

	1.3.4

	1.3.5

	1.3.6

	1.3.7

	Version 1.4
	1.4.0

	1.4.1

	1.4.2

	1.4.3

	1.4.4

	1.4.5

	Version 1.5
	1.5.0

	1.5.1

	1.5.2

	1.5.3

	1.5.4

	1.5.5

	1.5.6

	1.5.7

Version 1.0

1.0.0

This is the initial release of pVACtools, a cancer immunotherapy suite consisting of the following tools:

pVACseq

A cancer immunotherapy pipeline for identifying and prioritizing neoantigens from a list of tumor mutations.

pVACfuse

A tool for detecting neoantigens resulting from gene fusions.

pVACvector

A tool designed to aid specifically in the construction of DNA vector-based cancer vaccines.

1.0.1

This is a hotfix release. It fixes the following issues:

	Additional data, like example data and VEP plugins were not included in the
package correctly so the commands to download these files would fail. This
has been corrected.

	Class II predictions would fail if the protein sequences used for binding
predictions in IEDB were shorter than 15 peptide sequences. This has been
fixed.

1.0.2

This is a hotfix release. It fixes the following issues:

	The epitope length used for generating the peptide fasta when running with
multiple epitope lengths was incorrect. This would potentially result in including
fasta sequences that were shorter than the largest epitope length which
would cause an error during calls to IEDB.

	pVACseq would fail with a nondescript error message if the input VCF was not
annotated with VEP before running. A more descriptive error message has been
added.

	IEDB changed the format of class II IEDB alleles which would cause an error
when running with those alleles. pVACtools will now handle transposing the
affected alleles into the new format.

	The standalone binding filters had a few bugs that would result in syntax
errors during runtime.

	The indexes created for each fusion entry with pVACfuse had the potential to
not be unique which would result in parsing errors downstream.

	pVACseq had the potential to use the incorrect VEP allele for positions with
multiple alternate alleles which would result in the incorrect CSQ entry
getting used for some of those alternate alleles.

	pVACseq would throw an error if the chosen peptide sequence length exceeds
the wildtype protein sequence length of a transcript.

1.0.3

This is a hotfix release. It fixes the following issues:

	Stop-gain mutation were previously not handled correctly. If a mutation had
a * (stop gain) in the VEP Amino_acids field, pVACseq would throw an error.
We now ensure that those cases are handled. pVACseq will also skip stop-gain
mutations if the resulting mutant peptide sequence is not novel.

	pVACseq would previously throw an error if multiple mutations resulted
in the same consequence. This is now handled by assigning a unique
identifier to each mutation.

	We added a better warning messages if the chosen prediction algorithms and
alleles MHC classes are mutually exclusive, e.g., if only class I prediction
algorithms were chosen with only class II alleles. Previously, pVACseq would
simply finish without producing any output or errors.

1.0.4

This is a hotfix release. It fixes the following issues:

	We discovered a couple more cases of mutations involving stop codons that
would result in errors. These are amino acid changes (VEP Amino_acids field)
for large indels that would span exon boundaries (multiple * in the Amino_acids
field), or amino acid changes involving the transcript stop codon (ending in X).
These cases are now handled.

1.0.5

This is a hotfix release. It fixes the following issues:

	IEDB changed the format of combinatorial class II alleles to use / as a
delimiter instead of -. DP alleles were previously fixed in pull request
#85 [https://github.com/griffithlab/pVACtools/pull/85] but this failed to
address DQ alleles. This version fixes this oversight.

1.0.6

This is a hotfix release. It fixes the following issues:

	There was a bug in how alternate alleles were resolved when matching VEP
consequence fields to an entry which resulted in certain indels to be
skipped. This has now been fixed.

1.0.7

This is a hotfix release. It fixes the following issues:

	VEP82 and higher supports selenocysteine modicfications (amino acid “U”), which is
not supported by downstream IEDB prediction algorithms. pVACtools now skips
sequences containing this amino acid with a warning.

1.0.8

This is a hotfix release. It fixes the following issues:

	The log directories were accidentially included with the pVACseq example data.
They are now removed.

	Some users were reporting mixed type warnings for pandas when running
pVACseq. We added some options to avoid this warning.

Version 1.1

1.1.0

This version adds a host of new features to pVACtools:

	pVACseq is now able to parse VAF, depth, and expression information directly
from the VCF. This makes the --additional-input-file-list option
obsolete. The --additional-input-file-list option is now deprecated and will be removed in an
upcoming release. For more information on how to annotate your VCF with
readcount and expression information, see the Input File Preparation page.

	pVACseq is now able to handle proximal germline and somatic variants. In
order to incorporate those into the epitope predictions, you will need to
provide a phased variants VCF to your pVACseq run using the
--phased-proximal-variants-vcf option. For more information on how to
create this file, see the Input File Preparation page.

	We added support to pVACseq for filtering on transcript support levels. This requires
the input VCF to be annotated with the TSL field by VEP. Be default, any
transcripts with a TSL above 1 will be filtered out.

	The binding filter of pVACseq and pVACfuse can now be run with flexible, allele-specific
binding-thresholds. This feature can be enabled using the
--allele-specific-binding-thresholds flag. The thresholds used are taken
from the IEDB recommendations [https://help.iedb.org/hc/en-us/articles/114094151811-Selecting-thresholds-cut-offs-for-MHC-class-I-and-II-binding-predictions].

	pVACseq now supports a --pass-only flag that will result in any VCF
entries with a FILTER to be skipped. Using this flag, only VCF entries
with a FILTER of PASS or . will be processed.

	We added support for the MHCflurry [http://www.biorxiv.org/content/early/2017/08/09/174243] and
MHCnuggets [http://karchinlab.org/apps/appMHCnuggets.html] prediction algorithms. These
can be used by listing MHCflurry, MHCnuggetsI (for MHC Class I alleles),
and/or MHCnuggetsII (for MHC Class II alleles) as the prediction
algorithms in your run commands.

	The default --tdna-vaf and --trna-vaf cutoff values have been
updated from 0.4 to 0.25. This is the minimum VAF threshold that an epitope
candidate must meet in order to pass the coverage filter.

	We now offer a graphical user interface, pVACviz, to run pVACseq as an alernative
to using the command line. pVACviz, can also be used to plot and filter your pVACseq
results.

1.1.1

This is a hotfix release. It fixes the following issue(s):

	In version 1.1 we updated VAFs to be fractions, rather than percentages. A
bug in this code change resulted in an error when using custom VAF cutoff
values instead of the default. This has now been fixed.

1.1.2

This is a hotfix release. It fixes the following issue(s):

	In version 1.1.0 we added a --pass-only flag to pVACseq that would
result in only variants with FILTER of PASS or . getting processed.
However, this option was not getting passed along to the pVACseq process
correctly, resulting in this option not taking effect. This hotfix release
fixes this issue and the --pass-only flag should now work as expected.

1.1.3

This is a hotfix release. It fixes the following issue(s):

	When using the MHCnuggets prediction algorithm for MHC class II alleles
(MHCnuggetsII) not all epitope sequences were predicted for inframe
insertions. This issues has now been fixed.

	For MHCflurry, cases with peptide sequences that were shorter than the
desired epitope length were not handled correctly which resulted in an
error. This issue has been resolved in this release.

1.1.4

This is a hotfix release. It fixes the following issue(s):

	When running pVACvector with a with a pVACseq input file and the
corresponding VCF, the sample name wasn’t being passed along correctly which
would cause an error if the input VCF was a multi-sample VCF.

	pVACseq would throw an error if the value of a gene or transcript expression
field was empty.

1.1.5

This is a hotfix release. It fixes the following issue(s):

	When running pVACseq with a phased input VCF the mutation position offset
of a frameshift somatic variant to their proximal variants was not getting
calculated correctly, leading to errors.

	For running pVACvector we removed a dependency on a commandline tool by
using a python library instead. This allowed us to remove a system call
to a tool that required standalone installation by the user.

Version 1.2

1.2.0

This version introduces multiprocessing to pVACtools. This significantly speeds
up the execution of pVACseq, pVACfuse, and pVACvector. To turn on
multiprocessing simply set the --n-threads parameter to the desired number
of parallel processes. When running the
tools using the IEDB RESTful API, we recommend to keep this number small (<5)
as too many parallel calls to their API might lead to IEDB blocking jobs
submitted from your IP address. It is recommended to use a standalone IEDB
installation when running in multiprocessing mode. By default, multiprocessing is
turned off.

This version also fixes a few bugs:

	In certain cases pVACvector was not calculating the junction scores
correctly, leading to potentially finding a peptide order that would include
high-binding junction epitopes or peptide orders that were not optimal.
This issue has now been fixed.

	Due to a bug in our packaging code, the 1.1.x versions of pVACtools did not
include the latest version of the pVACviz code. This version now includes
the most up-to-date version of the graphical user interface.

Version 1.3

1.3.0

This version adds a few features and updates:

	pVACvector now accepts a list of spacers to use when testing junction
epitopes. These can be specified using the --spacers parameter with a
comma-separated list of spacer peptides. Including the string None will
also test each junction without spacers. The default is
None,HH,HHC,HHH,HHHD,HHHC,AAY,HHHH,HHAA,HHL,AAL

	The --expn-val cutoff parameter has been updated to be a float instead
of an integer. This allows the user to provide a decimal
cutoff for the filtering on gene and transcript expression values.
Previously, only whole numbers were accepted.

	Decimal numbers in the pVACseq reports are now rounded to three decimal
places. Previously, they were not rounded.

In addition, this version also fixes a few bugs:

	The --normal-vaf cutoff value was incorrectly defaulting to 0.2 instead
of 0.02. This resulted in the coverage filter not being as stringent as it
should’ve been.

	There were a number of bugs in pVACapi and pVACviz that would prevent a user
from submitting jobs using the interface in certain conditions. These have been resolved.

	pVACseq would previously not support SVs in the input VCF where the alt had
a value of . These kinds of variants are now supported.

1.3.1

This version is a hotfix release. It fixes the following issues:

	Some prediction algorithms might predict a binding affinity of 0 which could
lead to division by 0 errors when calculating the fold change. In this
situation we now set the fold change to inf (infinity).

	Previously the --maximum-transcript-support-level threshold was not
getting propagated to the main pipeline step correctly, resulting in errors
in the transcript support level filter.

	There was a bug in the multiprocessing logic that would result in
certain steps getting executed more than once, which in turn would lead to
FileNotFound errors when these duplicate executions were happening at the
same time.

1.3.2

This version is a hotfix release. It fixes the following issues:

	A bug in the parsing code of the binding prediction output files would
result in only some binding prediction output files getting processed when using multiprocessing.
This would potentially cause incomplete output reports that were missing
predictions for some input variants. pVACseq, pVACfuse, and
pVACvector runs that were done without multiprocessing should’ve been
unaffected by this bug.

1.3.3

This version is a hotfix release. It fixes the following issues:

	We were previously using our own locking logic while running in multiprocssing mode which
contained a bug that could result in runs getting stuck waiting on a lock.
This release switches to using the locking implementation provided by the
pymp-pypi multiprocessing package.

	In an attempt to reduce cluttered output generated by Tenserflow we were
previously repressing any message generated during the import of MHCflurry and
MHCnuggets. As a side effect, this would also suppress any legitimate error messages
generated during these imports which would result in the pvacseq,
pvacfuse, and pvacvector commands exiting without output. This
release updates to code so that actual errors still get output.

1.3.4

This version is a hotfix release. It fixes the following issues:

	We were previously using nested multiprocessing which would cause defunct
child jobs and stalled runs. Switching to single-level multiprocessing fixes
this issue.

	When running pVACvector from a pVACseq result file the creation of the
peptide fasta file might cause an error if the epitope was situated near the
beginning of the transcript. This issue has been fixed.

1.3.5

This version is a hotfix release. It fixes the following issues:

	While the previous release fixed the issue of stalled processes when running
IEDB-based prediction algorithms in multiprocessing mode, we were still experience a similar problem
when running with MHCflurry and MHCnuggets. These two prediction algorithms
are tensorflow-based which in the way it is currently used in pVACtools is
not compatible with being run in multiprocessing mode. As a stop-gap measure
this release removes MHCnuggets and MHCflurry from being run in
multiprocessing mode. This resolves the problem until we can change our
usage of these prediction algorithms to be multiprocessing-compatible.

1.3.6

This version is a hotfix release. It fixes the following issues:

	Tensorflow is incompatible with multiprocessing when the parent process
imports tensorflow or a tensorflow-dependent module. For this reason
MHCflurry and MHCnuggets were removed from parallelization. In this
release we moved to calling MHCflurry and MHCnuggets on the command line,
which allowed us to remove our direct imports of these modules and allows us
to parallelize the calls to these two prediction algorithms. All prediction
algorithms supported by pVACtools can now be used in multiprocessing mode.

	Some users were reporting Illegal instruction (core dumped) errors
because their hardware was incompatible with the version of tensorflow we
were using. Pinning the tensorflow version to 1.5.0 with this release should
solve this problem.

	When running in multiprocessing mode while using the IEDB API, users would
experience a higher probability of failed requests to the API. The IEDB API
would throw a 403 error when rejecting requests due to too
many simultaneous requests. pVACtools would previously not retry on this type of
error. This release now adds retries on this error code. We also improved
the random wait time calculation between requests so that the likelihood of
multiple retries hitting at the same time has now been reduced.

	When encountering a truncated input VCF, the VCF parser used by pVACtools
would throw an error that was not indicative of the real error source.
pVACseq now catches these errors and emmits a more descriptive error message
when encountering a truncated VCF.

	One option when annotating a VCF with VEP is the -total-length flag. When
using this flag, the total length would be written to the
Protein_position field. pVACseq previously did not support a VCF with a
Protein_position field in this format. This release adds support for it.

	When creating the combined MHC class I and MHC class II all_epitopes file,
we were previously not correctly determining all necessary headers which
would lead to incorrect output of the individual prediction algorithm score
columns. This release fixes this issue.

1.3.7

This version is a hotfix release. It fixes the following issues:

	The previous version accidentally removed the
--additional-input-file-list option. It has been restored in this
version. Please note that it is slated for permanent removal in the next
feature release (1.4.0).

Version 1.4

1.4.0

This version adds the following features:

	pVACvector now tests spacers iteratively. During the first iteration, the
first spacer in the list of --spacers gets tested. In the next
iteration, the next spacer in the list gets added to the pool of spacers to
tests, and so on. If at any point a valid ordering is found, pVACvector will
finish its run and output the result. This might result in a slightly
less optimal (but still valid) ordering but improves runtime significantly.

	If, after testing all spacers, no valid ordering if found, pVACvector will
clip the beginning and/or ends of problematic peptides by one amino acid.
The ordering finding process is then repeated on the updated list of
peptides. This process may be repeated a number of times, depending on the
value of the --max-clip-length parameter.

	This version adds a standalone command to create the pVACvector
visualizations that can be run by calling pvacvector visualize using a
pVACvector result file as the input.

	We removed the --aditional-input-file-list option to pVACseq. Readcount and
expression information are now taken directly from the VCF annotations.
Instructions on how to add these annotations to your input VCF can be found
on the Input File Preparation page.

	We added support for variants to pVACseq that are only annotated as
protein_altering_variant without a more specific consequence of
missense_variant, inframe_insertion, inframe_deletion, or frameshift_variant.

	We resolved some syntax differences that prevented pVACtools from being run
under python 3.6 or python 3.7. pVACtools should now be compatible with all
python >= 3.5 versions.

1.4.1

This is a hotfix release. It fixes the following issues:

	In version 1.4 we updated our usage of conda to use conda activate
instead of source activate to make it compatible with newer conda
versions. However, this was leading to errors due to the way that we were
calling conda. This has been updated and should resolve these types of
errors.

1.4.2

This is a hotfix release. It fixes the following issues:

	This releases fixes a concurrency issue with pVACapi/pVACviz that would occurr when
users would try to visualize multiple files at the same time.

1.4.3

This is a hotfix release. It fixes the following issues:

	IEDB will output a warning if an epitope contains only amino acid symbols
that could also be nucleotides. This would cause an error during parsing of
the IEDB output files. This version updates the parser to ignore these
warnings.

	We added some improvements to pVACapi regarding database file read
speeds and transaction handling.

1.4.4

This is a hotfix release. It fixes the following issues:

	This version starts enforcing a file
size limit (14MB) to be able to visualize a result file in pVACviz.
Larger files will no longer be
visualizable in pVACviz since they take too long to load.

1.4.5

This is a hotfix release. It fixes the following issues:

	In a previous version we implemented a faster method for reading data from
the database in pVACapi. However, this would fail if the postgres user is
not a superuser. This version fixes this issue by using the previous
database file read method in this situation.

	This version marks certain columns of the output reports as not visualizable
in pVACviz/pVACapi because they contain string content that cannot be
plotted in a scatterplot.

Version 1.5

1.5.0

This version adds the following features:

	This version introduces a new tool, pVACbind, which can be used
to run our immunotherapy pipeline with a peptides
FASTA file as input. This new tool is similar to pVACseq but certain
options and filters are removed:

	All input sequences are interpreted in isolation so corresponding
wildtype sequence and score information are not assigned. As a consequence,
the filter threshold option on fold change is removed.

	Because the input format doesn’t allow for association of readcount,
expression or transcript support level data, pVACbind doesn’t run the coverage
filter or transcript support level filter.

	No condensed report is generated.

Please see the pVACbind documentation for more information.

	pVACfuse now support annotated fusion files from AGFusion [https://github.com/murphycj/AGFusion] as input. The
pVACfuse documentation has been updated with instructions on how to
run AGFusion in the Prerequisites section.

	The top score filter has been updated to take into account alternative known
transcripts that might result in non-indentical peptide sequences/epitopes.
The top score filter now picks the best epitope for every available transcript of a
variant. If the resulting list of epitopes for one variant is not identical,
the filter will output all eptiopes. If the resulting list of epitopes for one
variant are identical, the filter only outputs the epitope for the transcript with the highest
transcript expression value. If no expression data is available, or if
multiple transcripts remain, the filter outputs the epitope for the
transcripts with the lowest transcript Ensembl ID.

	This version adds a few new options to the pvacseq
generate_protein_fasta command:

	The --mutant-only option can be used to only output mutant peptide
sequences instead of mutant and wildtype sequences.

	This command now has an option to provide a pVACseq all_eptiopes or
filtered TSV file as an input (--input-tsv). This will limit the
output fasta to only sequences that originated from the variants in that file.

	This release adds a pvacfuse generate_protein_fasta command that works
similarly to the pvacseq generate_protein_fasta command but works with
Integrate-NEO or AGFusion input files.

	We removed the sorting of the all_epitopes result file in order to reduce
memory usage. Only the filtered files will be sorted. This version also updates the sorting algorithm of the
filtered files as follows:

	If the --top-score-metric is set to median the results are first
sorted by the Median MT Score. If multiple epitopes have the same
Median MT Score they are then sorted by the Corresponding Fold
Change. The last sorting criteria is the Best MT Score.

	If the --top-score-metric is set to lowest the results are first
sorted by the Best MT Score. If multiple epitopes have the same
Best MT Score they are then sorted by the Corresponding Fold
Change. The last sorting criteria is the Median MT Score.

	pVACseq, pVACfuse, and pVACbind now calculate manufacturability metrics
for the predicted epitopes. Manufacturability metrics are also
calculated for all protein sequences when running the pvacseq generate_protein_fasta
and pvacfuse generate_protein_fasta commands. They are saved in the .manufacturability.tsv
along to the result fasta.

	The pVACseq score that gets calculated for epitopes in the condensed report
is now converted into a rank. This will hopefully remove any confusion about
whether the previous score could be treated as an absolute measure of
immunogencity, which it was not intended for. Converting this score to a
rank ensures that it gets treated in isolation for only the epitopes in the
condensed file.

	The condensed report now also outputs the mutation position as well as the
full set of lowest and median wildtype and mutant scores.

	This version adds a clear cache function to pVACapi that can be called by
running pvacapi clear_cache. Sometimes pVACapi can get into a state
where the cache file contains conflicting data compared to the actual
process outputs which results in errors. Clearing the cache using the pvacapi clear_cache
function can be used in that situation to resolve these errors.

1.5.1

This is a hotfix release. It fixes the following issues:

	There was a syntax error in
tools/pvacseq/generate_condensed_ranked_report.py that would result in
an error when running the pvacseq generate-condensed-ranked-report
commands.

	We were previously not correctly catching cases where the intermediate fasta for
making binding prediction was empty. This would result in errors downstream.

1.5.2

This is a hotfix release. It fixes the following issues:

	AGFusion exon files may be comma-delimited. Previously, the file parser
assumed the files were tab-delimited. This release now allows AGFusion
inputs that are comma- or tab-delimited.

1.5.3

This is a hotfix release. It fixes the following issues:

	pVACbind would previously throw an error if a peptide sequence in the input
fasta was shorter than one of the chosen epitope lengths. This issue has
been fixed by first parsing the input fasta and creating individual fasta
files for each epitope length that enforce a minimum length of the peptide
sequences matching the respective epitope length.

	Previous versions of pVACtools resolved an issue where IEDB would output a
warning line if one of the epitope sequences only contained A, C, G, or T
amino acids, since those sequences could also be nuclotide sequences.
However, this issue was only fixed in pVACseq, not pVACbind, or pVACvector.
This release fixes this issue for all tools.

	The wrappers for NetChop or NetMHCstabpan split the set of input epitopes
into chunks of 100 before processing. Due to a bug in the file splitting
logic, one epitope for each chunk over 100 would be errenously dropped. This
effectively would result in less epitopes being returned in the filtered
report than if running the pipelines without NetChop or NetMHCstabpan.

1.5.4

This is a hotfix release. It fixes the following issues:

	The pvacseq generate_protein_fasta command would previously error out
when running with a selected peptide_sequence_length that would reduce
in peptides < 7 amino acids long. This error would occur when calculating
manufacturability metrics. This release now only calculates these metrics
for peptides >=7 amino acids long.

	We updated the calculation for the flanking sequence length when generating
peptide sequences to result in peptides that are closer in length to the
requested peptide_sequence_length.

	This release fixes an edge case where a frameshift mutation impacted the
first amino acid of a transcript. This case would previously throw a fatal
error but will now be processed as expected.

1.5.5

This is a hotfix release. It fixes the following issues:

	The pvacfuse run command would previously output a misleading warning
message if an AGFusion input directory didn’t contain any processable fusion
entries. This warning message has been fixed.

	Between VEP versions, the Downstream protein sequence prediction for some
frameshift mutations was changed to now include a leading wildtype amino
acid. This potential difference in VEP-predicted Downstream protein
sequences was not accounted for and would result in frameshift mutation
protein prediction that would duplicate this leading wildtype amino acid.
This version updates our prediction pipeline to remove this duplicated amino
acid and output a fatal error if the Downstream protein sequence does not
contain the leading wildtype amino acid.

1.5.6

This is a hotfix release. It fixes the following issues:

	The pvacbind run command would previously error out if one of the input
sequences would contain a X stop codon. This update will remove the X amino
acid and the downstream sequence before further processing the remaining
protein sequence.

	A bug in the pvacfuse top_score_filter code would previsouly result
in an error when trying to run this command. This has now been fixed.

1.5.7

This is a hotfix release. It fixes the following issues:

	The pvacbind run command would previously allow fasta input files with
duplicated headers. However, it would silently skip subsequent entries with
duplicated headers even if the fasta sequence was novel. With this release
pVACbind will now error out if a duplicate fasta header is encounterd.

Citations

Jasreet Hundal+, Susanna Kiwala+, Joshua McMichael, Christopher A Miller,
Alexander T Wollam, Huiming Xia, Connor J Liu, Sidi Zhao, Yang-Yang Feng,
Aaron P Graubert, Amber Z Wollam, Jonas Neichin, Megan Neveau, Jason Walker,
William E Gillanders, Elaine R Mardis, Obi L Griffith, Malachi Griffith.
pVACtools: a computational toolkit to select and visualize cancer
neoantigens [https://doi.org/10.1158/2326-6066.CIR-19-0401].
Cancer Immunology Research. 2020 Mar;8(3):409-420. DOI: 10.1158/2326-6066.CIR-19-0401. PMID: 31907209 [https://www.ncbi.nlm.nih.gov/pubmed/31907209]. (+) equal contribution.

Jasreet Hundal, Susanna Kiwala, Yang-Yang Feng, Connor J. Liu, Ramaswamy Govindan,
William C. Chapman, Ravindra Uppaluri, S. Joshua Swamidass, Obi L. Griffith, Elaine R. Mardis,
and Malachi Griffith. Accounting for proximal variants improves neoantigen prediction [https://www.nature.com/articles/s41588-018-0283-9].
Nature Genetics. 2018, DOI: 10.1038/s41588-018-0283-9. PMID: 30510237 [https://www.ncbi.nlm.nih.gov/pubmed/30510237].

Jasreet Hundal, Beatriz M. Carreno, Allegra A. Petti, Gerald P. Linette, Obi
L. Griffith, Elaine R. Mardis, and Malachi Griffith. pVACseq: A genome-guided
in silico approach to identifying tumor neoantigens [http://www.genomemedicine.com/content/8/1/11]. Genome Medicine. 2016,
8:11, DOI: 10.1186/s13073-016-0264-5. PMID: 26825632 [http://www.ncbi.nlm.nih.gov/pubmed/26825632].

Contact

Bug reports or feature requests can be submitted on the pVACtools Github page [https://github.com/griffithlab/pVACtools/issues]. You may also contact us by email at help@pvactools.org.

To stay up-to-date on the latest pVACtools releases please join our Mailing List.

Mailing List

To stay up-to-date on the latest pVACtools releases please join our mailing
list by browsing to https://groups.google.com/forum/#!forum/pvactools-users
and clicking the blue “Join group to post” button.

Index

 _images/Pan.png

_images/Reset.png

_images/BoxZoom.png

_images/Hover.png

_images/Tap.png

_images/WheelZoom.png
AP

_images/output_file_columns.png
k———————————————17-mer peptide window ——
(length determined by the --peptide-sequence-length argument)

[918 l7]ef5]af3]2fal2]3[a]5[6[]7]8]59]

=] |

o= =t

[o=3] BT

o= — —

Mutati
Sub-peptice positon | [5E8] =1 | Cosition

o=l =

be=7]

[pex)

[o=1] —

.0 |
9-mer epitope “registers”
(length determined by
the --epitope-length argument)

nav.xhtml

 Table of Contents

 		
 pVACtools

 		
 pVACseq

 		
 Features

 		
 Input File Preparation

 		
 Annotating your VCF with VEP

 		
 Adding coverage data to your VCF

 		
 Adding expression data to your VCF

 		
 Creating a phased VCF of proximal variants

 		
 Getting Started

 		
 Running pVACseq using Docker

 		
 Usage

 		
 Output Files

 		
 all_epitopes.tsv and filtered.tsv Report Columns

 		
 filtered.condensed.ranked.tsv Report Columns

 		
 Filtering Commands

 		
 Binding Filter

 		
 Coverage Filter

 		
 Transcript Support Level Filter

 		
 Top Score Filter

 		
 Additional Commands

 		
 Download Example Data

 		
 Install VEP Plugin

 		
 List Valid Alleles

 		
 List Allele-Specific Cutoffs

 		
 Optional Downstream Analysis Tools

 		
 Generate Protein Fasta

 		
 Generate Condensed, Ranked Report

 		
 Common Errors

 		
 Input VCF Sample Information

 		
 Input VCF Compression and Indexing

 		
 Input VCF VEP Annotation

 		
 Other

 		
 Frequently Asked Questions

 		
 pVACbind

 		
 Prerequisites

 		
 Getting Started

 		
 Usage

 		
 Output Files

 		
 all_epitopes.tsv and filtered.tsv Report Columns

 		
 Filtering Commands

 		
 Binding Filter

 		
 Top Score Filter

 		
 Additional Commands

 		
 Download Example Data

 		
 List Valid Alleles

 		
 List Allele-Specific Cutoffs

 		
 pVACfuse

 		
 Prerequisites

 		
 Fusion detection and annotation

 		
 Getting Started

 		
 Usage

 		
 Output Files

 		
 all_epitopes.tsv and filtered.tsv Report Columns

 		
 filtered.condensed.ranked.tsv Report Columns

 		
 Filtering Commands

 		
 Binding Filter

 		
 Top Score Filter

 		
 Additional Commands

 		
 Download Example Data

 		
 List Valid Alleles

 		
 List Allele-Specific Cutoffs

 		
 Optional Downstream Analysis Tools

 		
 Generate Protein Fasta

 		
 pVACvector

 		
 Prerequisites

 		
 Getting Started

 		
 Usage

 		
 Additional Commands

 		
 Creating Vector Visualization

 		
 Download Example Data

 		
 List Valid Alleles

 		
 List Allele-Specific Cutoffs

 		
 Output Files

 		
 pVACviz

 		
 Installation

 		
 MHCflurry

 		
 PostgreSQL

 		
 Running pVACviz

 		
 pVACapi Directories

 		
 /archive

 		
 /export

 		
 /input

 		
 /visualize

 		
 /.processes

 		
 /.tmp

 		
 Starting Processes

 		
 Populating and Submitting the Start Form

 		
 Notes

 		
 Managing Processes

 		
 Displaying All Managed Processes

 		
 Displaying Process Details

 		
 Process Actions

 		
 Visualizing Processes

 		
 Visualizing Completed Processes

 		
 Visualizing pVACseq Results Files

 		
 Scatterplot Visualization

 		
 Axis Columns

 		
 Filters

 		
 Data Table

 		
 Exporting Visualization Data

 		
 pVACapi Troubleshotting

 		
 Installation

 		
 Installing IEDB binding prediction tools (strongly recommended)

 		
 MHC Class I

 		
 MHC Class II

 		
 Installing MHCflurry

 		
 Installing MHCnuggets

 		
 PostgreSQL

 		
 Docker and CWL

 		
 Download CWL tool wrappers

 		
 Tools Used By pVACtools

 		
 IEDB (Immune Epitope Database)

 		
 MHCflurry

 		
 MHCnuggets

 		
 NetChop

 		
 NetMHCstabpan

 		
 Vaxrank

 		
 Frequently Asked Questions

 		
 Release Notes

 		
 Version 1.0

 		
 1.0.0

 		
 1.0.1

 		
 1.0.2

 		
 1.0.3

 		
 1.0.4

 		
 1.0.5

 		
 1.0.6

 		
 1.0.7

 		
 1.0.8

 		
 Version 1.1

 		
 1.1.0

 		
 1.1.1

 		
 1.1.2

 		
 1.1.3

 		
 1.1.4

 		
 1.1.5

 		
 Version 1.2

 		
 1.2.0

 		
 Version 1.3

 		
 1.3.0

 		
 1.3.1

 		
 1.3.2

 		
 1.3.3

 		
 1.3.4

 		
 1.3.5

 		
 1.3.6

 		
 1.3.7

 		
 Version 1.4

 		
 1.4.0

 		
 1.4.1

 		
 1.4.2

 		
 1.4.3

 		
 1.4.4

 		
 1.4.5

 		
 Version 1.5

 		
 1.5.0

 		
 1.5.1

 		
 1.5.2

 		
 1.5.3

 		
 1.5.4

 		
 1.5.5

 		
 1.5.6

 		
 1.5.7

 		
 Citations

 		
 Contact

 		
 Mailing List

_images/pVACfuse_logo_trans-bg_sm_v4b.png
an
G PVACfuse

_images/pVACfuse_logo_trans-bg_sm_v4b1.png
an
G PVACfuse

_images/pVACbind_logo_trans-bg_sm_v4b.png
pVAC

_images/pVACbind_logo_trans-bg_sm_v4b1.png
pVAC

_images/pVACseq_logo_trans-bg_sm_v4b2.png
pVAC

_images/pVACtools_main-figure_v5a.png
results

f

N J

_intervention) |
\imervnton)

f’/ synthesize \\

\\\ B vaccine B /,‘

t

l

/ perform clinical\‘ ,/ alignment, variant,
and fusion calling,
HLA typing

ﬂvaluate clinica;l\‘ / sampling & \
\7 sequencing /

W

/\»\

[for fusions | me——-

tumor RNA BAM

normal DNA BAM

tumor DNA BAM

SNV & Indel VCF

HLA type

AGFusion Results

as

qo pVAC vector

8

c% pVAC api
:

% pVACVviz

action)
J

data

generate neoantigen

sequence-order candidates

/-

\
AN

|

validate
neoantigens
/

provide access to pVACtools commands, processes,

and data via an HTTP REST interface

launch pVACseq

processes

<—— research / treatment step

processes

<+—— optional step

manage pVACseq

l/prepare inputs\
o / ; }

phased |

[annotated | |

candidate
neoantigens

83 pVACfuse

generate neoantigens
generate FASTA
epitope predictions
default filtering
stability prediction
cleavage site prediction

rank neoantigens

select neoantigens
binding filter

top score filter

l | viF J | viF
%pVACseq

generate neoantigens
generate FASTA
epitope predictions
default filtering
stability prediction
cleavage site prediction

rank neoantigens

select neoantigens
binding filter
coverage filter

transcript support level filter

——< top score filter
— -
. J
view pVACseq visualize pVACseq launch, manage, view, “‘ launch, manage, view, .

results

results

+_ visualize pVACfuse results

+—— component communication

o—— future component communication

visualize pVACvector results

as
Qb

FASTA

v
&5 pVACbind

generate neoantigens

epitope predictions
default filtering
stability prediction
cleavage site prediction

rank neoantigens

select neoantigens
binding filter

top score filter

pVACtools

_images/pVACseq_logo_trans-bg_sm_v4b.png
pVAC

_images/pVACseq_logo_trans-bg_sm_v4b1.png
pVAC

_images/pVACvector_logo_trans-bg_sm_v4b.png
C% pPVAC vector

_images/pVACvector_logo_trans-bg_sm_v4b1.png
C% pPVAC vector

_images/pVACviz_logo_trans-bg_sm_v4b.png
an
oo PVACVviz

_images/pvacviz-detail.png
Process dev_run_016

oeere | [(arcave | [(exeorr

) [Restanr | [Tsror]

© Completed: No MHC class Il alleles chosen. Skipping MHC class Il predictions.

Parameters

Sample Name.
dev_run_016

Input

/Users/jmemichael/pVAC-
Sea/input/test-samples/input.vef
Alleles

HLA-A01:03, HLA-A®OT:04, HLA-
A®01:06, HLA-A"OT:07, HLA-A01.08,
HLA-A®01:09

Prediction Algorithms
MHCnuggetsl, MHCnuggetsll,
PickPocket

Epitope Lengths Peptide Sed. Len.
10,8,9 2

NetMHC Stabpan

false

Binding Threshold

500

Allele Specific Cutoffs

false

Top Score Metric

median

Minimum Fold Change

o

Expression Value

1

Normal Coverage Cutoff

5

‘TONA Coverage Cutoff

5

TRNA Coverage Cutoff

5

Normal VAF Cutoff

5

TDNA VAF Cutoff

5

TRNA VAF Cutoff

5

FASTA Size

200

IEDB Retries

5

Keep Temp. Files

false

pVACseq
Command

pvacseq run /Users/jmcmichael/pyAC-
Seq/input/test-sanples/input..vcf
dev_run_016 'HLA-A®@1:03,HLA-

A*61:08,HLA-A01:09" MHCnuggetsT
MHCnuggetsTI PickPocket
Jusers/jncnichael/pVAC-
Seq/.processes/dev_run_016 -e 16,8,9
-1 21 -m median -b 500 -c © --normal-
cov 5 --tdna-cov 5 --trna-cov 5 -

normal-vaf 5 --tdna-vaf 5 --trna-vaf
5 --expn-val 1 --maximun-transcript-
support-level 1 -5 200 -r 5 -d 1068

Log updated a day ago

Executing MHC Class I predictions
Converting .vcf to TSV

Completed

Splitting TSV into smaller chunks

Splitting TSV into smaller chunks - Entries 1-24

Completed

Generating Variant Peptide FASTA and Key Files

Generating Variant Peptide FASTA and Key Files - Entries 1-48

Completed

Processing entries for Allele HLA-A®1:03 and Epitope Length 10 - Entries 1-48

Running TEDB on Allele HLA-A%:
Entries 1-48

Predicting for 1253 peptides
Building model

Closest allele found HLA-AQ1:01
Completed

3 and Epitope Length 10 with Method MHChuggetsT -

Allele HLA-A®01:04 not valid for Method PickPocket. Skipping.
Parsing TEDB Output for Allele HLA-A*01:04 and Epitope Length & - Entries 1-48

Completed

Processing entries for Allele HLA-A®1:04 and Epitope Length 9 - Entrdes 1-48
Running TEDB on Allele HLA-A*61:04 and Epitope Length 9 with Method MHChuggetsT -

Entries 1-48

Entries 1-48
Completed

Parsing TEDB Output for Allele HLA-A*01:09 and Epitope Length 9 - Entries 1-48

Completed
Combining Parsed 1E08 Output Files
Completed

Running Binding Filters

Completed

Running Coverage Filters

Completed

Running Transcript Support Level Filter
Complete

Running Top Score Filter

Completed

Creating Condensed Report

Completed

Ranking neoepitopes

Completed

Done: Pipeline finished successfully. File /Users/jncmichael/pVAC-
Seq/.processes/dev_run_616/HHC_Class_I/dev_run_816. filtered.condensed. ranked. tsv

contains list of filtered putative neoantigens.

Using Tensorflow backend.

No MHC class 1T alleles chosen. Skipping MC class II predictions.

Results output directory: -/pVACseq/.processes/dev_run_016

[MHC_Class_l/dev_run_016.all_epitopes.tsv

_images/pvacviz-manage-list.png
308

Stop
Restart
Export
Archive
Delete

=

SEIEIE

9

tatus

Stopped

Stopped

Completed

Completed

ML

Stopped

‘Sample Name

dev_run_009.

dev_run_010

dev_run_om

dev_run_o14.

dev_run_o15

dev_max_trans_level_test_O1

dev_run_017

dev_run_o1

dev_run_018

MHC_test_007

Input File
input/input_O.vef
input/input_O.vef
input/input_O.vef
input/input_O.vef
input/input_O.vef

test-samples/input.vef

input/input_O.vef
input/input_O.vef
input/input_O.vef

test-samples/input.vef

1-10 0f 27 processes

DETAILS

DETAILS

DETAILS

DETAILS

DETAILS

DETAILS

DETAILS

DETAILS

DETAILS

DETAILS

23

>

_images/pVACviz_logo_trans-bg_sm_v4b1.png
an
oo PVACVviz

_images/pvacapi-directories.png
Name
[processes
B tmp

[archive

[export

[input

B visualize

Kind
Folder
Folder
Folder
Folder
Folder
Folder

_images/pvacviz-visualize.png
dev_run_016

MHC_Class_l/dev_run_016.all_epitopes.tsv (Processed data from IEDB, but with no filtering or extra data)

X-Axis Value

Corresponding WT Score

Y-Axis Value

Best T Score

Show 17822 results with null X or Y axis values

Binding Threshold (best): 0 .. 40400

Binding Threshold (median): 0 .. 45200

Fold Change: 0... 9.60

‘Tumor DNA Depth: 0 .. 305

Tumor DNA VAF: 0... 1.50

Download

Download Selected

11

2

1

18

15

Bost MT Score

553.508548221 1844

553.508548221 1844

553.508548221 1844

553.508548221 1844

553.508548221 1844

553.508548221 1844

724648

sa%0.79

1087465

75862

345,08

33812

10527.33

1350188

13848.77

Best MT Score Method
MHCnuggets!
MHCnuggets!
MHCnuggets!
MHCnuggets!
MHCnuggets!
MHCnuggets!
PickPocet
PickPocet
PickPocet
PickPocet
PickPocet
PickPocet
PickPocet
PickPocet

PlckPocket

Best MT Score vs Corresponding WT Score

<
400004
|
|
30000 b1
|
2
] ‘
£ 2000 |
3]
10000
H
s 10000 20000 30000 10000 50000
Corresponding WT Score
Gvomosome | Gomesponcing FoCrangs | Coreponding WTScors | EnsembiGenel> | Geneame | Havse Havsp
= osts aan2sootszssoess ENSGUOOO1O0A12 ACC2 ENSTOODOO216254.45980A | ENSPOOD
= osts aan2sootszzsseess ENSGUOOO1O0¢12 ACO2 ENSTOODOOR18254.40980A | ENSPOOD
= osts aan2sootszzsseess ENSGUOOO1O0¢12 ACO2 ENSTOODOOR18254.40980A | ENSPOOD
= osts aan2sootszzsseess ENSGUOOO1O0¢12 ACO2 ENSTOODOOR18254.40980A | ENSPOOD
= osts aan2sootszzsseess ENSGUOOO1O0¢12 ACO2 ENSTOODOOR18254.40980A | ENSPOOD
= osts aan2sootszzsseess ENSGUMOO1O0¢12 ACO2 ENSTOODOO218254.45980A | ENSPOOD
= 179 w23 ENSGUMOO1O0¢12 ACO2 ENSTOODOO218254.4098CA | ENSPOOD
= 179 ss0a0 ENSGUOOO1O0¢12 ACO2 ENSTOODOOR18254.40980A | ENSPOOD
= 179 1m0z ENSGUMOO1O0¢12 ACO2 ENSTOODOO218254.45980A | ENSPOOD
= 179 ssarre ENSGUOOO1O0¢12 ACO2 ENSTOODOOR18254.40980A | ENSPOOD
= 179 Toomr.2¢ ENSGUOOO1O0¢12 ACO2 ENSTOODOOR18254.40980A | ENSPOOD
= 179 sero20 ENSGUOOO1O0¢12 ACO2 ENSTOODOOR18254.40980A | ENSPOOD
= oss Toomr.2¢ ENSGUOOO1O0¢12 ACO2 ENSTOODOOR18254.40980A | ENSPOOD
= 179 1asesza ENSGUOOO1O0¢12 ACO2 ENSTOODOOR18254.40980A | ENSPOOD
= oss 07067 ENSGUMOO1O0¢12 ACC2 ENSTOODO216254.45980A | ENSPOOD

_images/vector.jpg
POM121C-G3107R

DTX3L-G501R
34338.35nM

11088.15nM

PRDM15-G654W

17880.32nM

ACSL3-S345N 27377.42nM

FAT3-R4848T

Vector Design

13969.7nM

PEX1-V356l

TP53-R157H
832.77nM

6752.04nM

CASP10-S654R
12060.51nM

NRCAM-P838H 28107.38nM

SUMF2-G23A

_images/pvacviz-start.png
Start Process

Required Parameters Optional Parameters

Sample Name MHC-run-007a User-defined reference name for the process
Input VCF inputve .| InputVcF
Prediction Algorithms Bl e List of prediction algorithms to use
x MHCnuggetsl | x NNalign
x NetMHC PickPocket
Alleles Bl Bl List of alleles against which to run the selected
~ | algorithms.
x DRBITLO1
Epitope Lengths B BE BR . | Listof epitope lengths to produce

® NOTE: Ensure that both the Phased Proximal Variants VCF RESET [> SUBMIT PROCESS
and Input VCF include their corresponsing tabix .tbi files within

the same folder.

_images/pvacviz-visualize-list.png
Visualizable Files

Process Results Visualize Folder

v % dev_run_010 v B1 ~/pVAC-Seq/visualize

v B3 dev_run_om

~ B MHC_Class_|

[= dev_run_OnL.all_epitopes.tsv

[= MHC_Class_l/dev_run_010.all_epitopes.tsv

v & dev_run_om
v Bllog

[MHC_Class_l/dev_run_OTLall_epitopes.tsv

_static/comment-bright.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/file.png

_static/plus.png

_static/pVACtools_favicon_v1b.png
QL

_static/pVACtools_logo_200px_v1a.png
S5 PVACtools

_static/up-pressed.png

_static/up.png

