
pVACtools Documentation
Release 1.5.7

Jasreet Hundal, Susanna Kiwala, Aaron Graubert, Jason Walker, Chris Miller, Malachi Griffith and Elaine Mardis

Apr 22, 2020

Contents

1 pVACseq 3
1.1 Features . 3
1.2 Input File Preparation . 5
1.3 Getting Started . 13
1.4 Usage . 14
1.5 Output Files . 17
1.6 Filtering Commands . 21
1.7 Additional Commands . 25
1.8 Optional Downstream Analysis Tools . 26
1.9 Common Errors . 28
1.10 Frequently Asked Questions . 30

2 pVACbind 33
2.1 Prerequisites . 33
2.2 Getting Started . 33
2.3 Usage . 34
2.4 Output Files . 36
2.5 Filtering Commands . 37
2.6 Additional Commands . 39

3 pVACfuse 41
3.1 Prerequisites . 41
3.2 Getting Started . 42
3.3 Usage . 43
3.4 Output Files . 45
3.5 Filtering Commands . 48
3.6 Additional Commands . 50
3.7 Optional Downstream Analysis Tools . 51

4 pVACvector 53
4.1 Prerequisites . 53
4.2 Getting Started . 54
4.3 Usage . 54
4.4 Additional Commands . 56
4.5 Output Files . 58

5 pVACviz 59

i

5.1 Installation . 59
5.2 Running pVACviz . 60
5.3 pVACapi Directories . 60
5.4 Starting Processes . 61
5.5 Managing Processes . 63
5.6 Visualizing Processes . 66
5.7 pVACapi Troubleshotting . 70

6 Installation 71
6.1 Installing IEDB binding prediction tools (strongly recommended) 72
6.2 Installing MHCflurry . 73
6.3 Installing MHCnuggets . 74
6.4 PostgreSQL . 74
6.5 Docker and CWL . 74

7 Tools Used By pVACtools 77
7.1 IEDB (Immune Epitope Database) . 77
7.2 MHCflurry . 77
7.3 MHCnuggets . 78
7.4 NetChop . 78
7.5 NetMHCstabpan . 78
7.6 Vaxrank . 78

8 Frequently Asked Questions 79

9 Release Notes 81
9.1 Version 1.0 . 81
9.2 Version 1.1 . 83
9.3 Version 1.2 . 84
9.4 Version 1.3 . 85
9.5 Version 1.4 . 87
9.6 Version 1.5 . 88

10 Citations 93

11 Contact 95

12 Mailing List 97

13 New in release 1.5.7 99

14 New in version 1.5 101

15 Citations 103

16 Source code 105

17 License 107

ii

pVACtools Documentation, Release 1.5.7

pVACtools is a cancer immunotherapy tools suite consisting of the following tools:

pVACseq A cancer immunotherapy pipeline for identifying and prioritizing neoantigens from a VCF file.

pVACbind A cancer immunotherapy pipeline for identifying and prioritizing neoantigens from a FASTA file.

pVACfuse A tool for detecting neoantigens resulting from gene fusions.

pVACvector A tool designed to aid specifically in the construction of DNA-based cancer vaccines.

pVACviz A browser-based user interface that assists users in launching, managing, reviewing, and visualizing the
results of pVACtools processes.

Contents 1

pVACtools Documentation, Release 1.5.7

2 Contents

CHAPTER 1

pVACseq

pVACseq is a cancer immunotherapy pipeline for the identification of personalized Variant Antigens by Cancer
Sequencing (pVACseq) that integrates tumor mutation and expression data (DNA- and RNA-Seq). It enables can-
cer immunotherapy research by using massively parallel sequence data to predicting tumor-specific mutant peptides
(neoantigens) that can elicit anti-tumor T cell immunity. It is being used in studies of checkpoint therapy response and
to identify targets for personalized cancer vaccines and adoptive T cell therapies. For more general information, see
the manuscript published in Genome Medicine.

1.1 Features

SNV and Indel support

pVACseq offers epitope binding predictions for missense, in-frame insertion, in-frame deletion, protein-altering, and
frameshift mutations.

VCF support

pVACseq uses a VCF file as its input. This VCF file must contain sample genotype information and be annotated with
the Ensembl Variant Effect Predictor (VEP). See the Input File Preparation section for more information.

No local install of epitope prediction software needed

pVACseq utilizes the IEDB RESTful web interface. This means that none of the underlying prediction software, like
NetMHC, needs to be installed locally.

Warning: We only recommend using the RESTful API for small requests. If you use the RESTful API to process
large VCFs or to make predictions for many alleles, epitope lengths, or prediction algorithms, you might overload
their system. This can result in the blacklisting of your IP address by IEDB, causing 403 errors when trying to use

3

http://www.genomemedicine.com/content/8/1/11

pVACtools Documentation, Release 1.5.7

the RESTful API. In that case please open a ticket with IEDB support to have your IP address removed from the
IEDB blacklist.

Support for local installation of the IEDB Analysis Resources

pVACseq provides the option of using a local installation of the IEDB MHC class I and class II binding prediction
tools.

Warning: Using a local IEDB installation is strongly recommended for larger datasets or when the making
predictions for many alleles, epitope lengths, or prediction algorithms. More information on how to install IEDB
locally can be found on the Installation page (note: the pvactools docker image now contains IEDB).

MHC Class I and Class II predictions

Both MHC Class I and Class II predictions are supported. Simply choose the desired prediction algorithms and
HLA alleles during processing and Class I and Class II prediction results will be written to their own respective
subdirectories in your output directory.

By using the IEDB RESTful web interface, pVACseq leverages their extensive support of different prediction algo-
rithms.

In addition to IEDB-supported prediction algorithms, we’ve also added support for MHCflurry and MHCnuggets.

MHC Class I Prediction Algorithm Version
NetMHCpan 4.0
NetMHC 4.0
NetMHCcons 1.1
PickPocket 1.1
SMM 1.0
SMMPMBEC 1.0
MHCflurry
MHCnuggets

MHC Class II Prediction Algorithm Version
NetMHCIIpan 3.2
SMMalign 1.1
NNalign 2.3
MHCnuggets

Comprehensive filtering

Automatic filtering on the binding affinity ic50 (nm) value narrows down the results to only include “good” candidate
peptides. The binding filter threshold can be adjusted by the user for each pVACseq run. pVACseq also support the
option of filtering on allele-specific binding thresholds as recommended by IEDB. Additional filtering on the binding
affitinity can be manually done by the user by running the standalone binding filter on the filtered result file to narrow
down the candidate epitopes even further or on the unfiltered all_epitopes file to apply different cutoffs.

Readcount and expression data are extracted from an annotated VCF to automatically filter with adjustable thresholds
on depth, VAF, and/or expression values. The user can also manually run the standalone coverage filter to further
narrow down their results from the filtered output file.

If the input VCF is annotated with Ensembl transcript support levels (TSLs), pVACseq will filter on the transcript
support level to only keep high-confidence transcripts of level 1. This filter can also be run standalone.

4 Chapter 1. pVACseq

http://help.iedb.org/
http://tools.iedb.org/mhci/download/
http://tools.iedb.org/mhcii/download/
http://www.biorxiv.org/content/early/2017/08/09/174243
http://karchinlab.org/apps/appMHCnuggets.html
https://help.iedb.org/hc/en-us/articles/114094151811-Selecting-thresholds-cut-offs-for-MHC-class-I-and-II-binding-predictions

pVACtools Documentation, Release 1.5.7

As a last filtering step, pVACseq applies the top score filter to only keep the top scoring epitope for each variant. As
with all previous filters, this filter can also be run standalone.

Ranking of candidate neoepitopes

Filtered neoepitopes are ranked based on the binding affinity, fold change between mutant and wildtype binding
affinity (agretopicity), gene expression, RNA and DNA VAF.

Incorporation of proximal germline and somatic variants

To incorporate proximal variants into the neoepitope predictions, users can provide a phased VCF of proximal variants
as an input to their pVACseq runs. This VCF is then used to incorporate amino acid changes of nearby variants that
are in-phase with a somatic variant of interest. This results in corrected mutant and wildtype protein sequences that
account for proximal variants when MHC binding predictions are performed.

NetChop and NetMHCstab integration

Cleavage position predictions are added with optional processing through NetChop.

Stability predictions can be added if desired by the user. These predictions are obtained via NetMHCstabpan.

1.2 Input File Preparation

The main input file to the pVACseq pipeline is a VCF file. The VCF needs to contain sample genotype information
(GT field). The VCF needs to be annotated with VEP to add transcript information.

If filtering on variant allele fractions (VAFs), depth, and expression values is desired, the VCF also needs to be
annotated with this data.

Refer to the following sections for instructions on how to annotate your VCF with these data and how to produce a
VCF for proximal variant analysis.

1.2.1 Annotating your VCF with VEP

The input to the pVACseq pipeline is a VEP-annotated VCF. This will add consequence, transcript, and gene informa-
tion to your VCF.

Installing VEP

1. To download and install the VEP command line tool follow the VEP installation instructions.

2. We recommend the use of the VEP cache for your annotation. The VEP cache can be downloaded following
these VEP cache installation instructions. Please ensure that the Ensembl cache version matches the reference
build and Ensembl version used in other parts of your analysis (e.g. for RNA-seq gene/transcript abundance
estimation).

3. Download the VEP plugins from the GitHub repository by cloning the repository:

1.2. Input File Preparation 5

http://useast.ensembl.org/info/docs/tools/vep/script/index.html
http://useast.ensembl.org/info/docs/tools/vep/script/vep_cache.html#cache
https://github.com/Ensembl/VEP_plugins

pVACtools Documentation, Release 1.5.7

git clone https://github.com/Ensembl/VEP_plugins.git

4. Copy the Wildtype plugin provided with the pVACseq package to the folder with the other VEP plugins by
running the following command:

pvacseq install_vep_plugin <VEP plugins directory>

Running VEP

Example VEP Command

./vep \
--input_file <input VCF> --output_file <output VCF> \
--format vcf --vcf --symbol --terms SO --tsl\
--hgvs --fasta <reference build FASTA file location> \
--offline --cache [--dir_cache <VEP cache directory>] \
--plugin Downstream --plugin Wildtype \
[--dir_plugins <VEP_plugins directory>] [--pick] [--transcript_version]

Required VEP Options

--format vcf
--vcf
--symbol
--terms SO
--tsl
--hgvs
--fasta <reference build FASTA location>
--offline
--cache
--plugin Downstream
--plugin Wildtype

• The --format vcf option specifies that the input file is in VCF format.

• The --vcf option will result in the output being written in VCF format.

• The --symbol option will include gene symbol in the annotation.

• The --terms SO option will result in Sequence Ontology terms being used for the consequences.

• The --tsl option adds transcript support level information to the annotation.

• The --hgvs option will result in HGVS identifiers being added to the annotation.

• Using the --hgvs option requires the usage of the --fasta argument to specify the location of the reference
genome build FASTA file.

• The --offline option will eliminate all network connections for speed and/or privacy.

• The --cache option will result in the VEP cache being used for annotation.

• The --plugin Downstream option will run the Downstream plugin which will compute the downstream
protein sequence after a frameshift.

• The --plugin Wildtype option will run the Wildtype plugin which will include the transcript protein
sequence in the annotation.

6 Chapter 1. pVACseq

pVACtools Documentation, Release 1.5.7

Useful VEP Options

--dir_cache <VEP cache directory>
--dir_plugins <VEP_plugins directory>
--pick
--transcript_version

• The --dir_cache <VEP cache directory> option may be needed if the VEP cache was downloaded
to a different location than the default. The default location of the VEP cache is at $HOME/.vep.

• The --dir_plugins <VEP_plugins directory> option may need to be set depending on where the
VEP_plugins were installed to.

• The --pick option might be useful to limit the annotation to the “top” transcript for each variant (the one for
which the most dramatic consequence is predicted). Otherwise, VEP will annotate each variant with all possible
transcripts. pVACseq will provide predictions for all transcripts in the VEP CSQ field. Running VEP without
the --pick option can therefore drastically increase the runtime of pVACseq.

• The --transcript_version option will add the transcript version to the transcript identifiers. This option
might be needed if you intend to annotate your VCF with expression information. Particularly if your expression
estimation tool uses versioned transcript identifiers (e.g. ENST00000256474.2).

Additional VEP options that might be desired can be found here.

1.2.2 Adding coverage data to your VCF

pVACseq is able to parse coverage information directly from the VCF. The expected annotation format is outlined
below.

Type VCF Sample Format Fields
Tumor DNA Coverage single-sample VCF or sample_name AD, DP, and AF
Tumor RNA Coverage single-sample VCF or sample_name RAD, RDP, and RAF
Normal DNA Coverage --normal-sample-name AD, DP, and AF

Tumor DNA Coverage

If the VCF is a single-sample VCF, pVACseq assumes that this sample is the tumor sample. If the VCF is a multi-
sample VCF, pVACseq will look for the sample using the sample_name parameter and treat that sample as the tumor
sample.

For this tumor sample, the tumor DNA depth is determined from the DP format field. The tumor DNA VAF is
determined from the AF field. If the VCF does not contain a AF format field, the tumor DNA VAF is calculated from
the AD and DP fields by dividing the allele count by the total read depth.

Tumor RNA Coverage

If the VCF is a single-sample VCF, pVACseq assumes that this sample is the tumor sample. If the VCF is a multi-
sample VCF, pVACseq will look for the sample using the sample_name parameter and treat that sample as the tumor
sample.

1.2. Input File Preparation 7

http://useast.ensembl.org/info/docs/tools/vep/script/vep_options.html

pVACtools Documentation, Release 1.5.7

For this tumor sample, the tumor RNA depth is determined from the RDP format field. The tumor RNA VAF is
determined from the RAF field. If the VCF does not contain a RAF format field, the tumor RNA VAF is calculated
from the RAD and RDP fields by dividing the allele count by the total read depth.

Normal DNA Coverage

To parse normal DNA coverage information, the input VCF to pVACseq will need to be a multi-sample (tumor/normal)
VCF, with one sample being the tumor sample, and the other the matched normal sample. The tumor sample is iden-
tified by the sample_name parameter while the normal sample can be specified with --normal-sample-name
option.

For this normal sample, the normal DNA depth is determined from the DP format field. The normal DNA VAF is
determined from the AF field. If the VCF does not contain a AF format field, the normal DNA VAF is calculated from
the AD and DP fields by dividing the allele count by the total read depth.

Using the vcf-readcount-annotator to add coverage information to your VCF

Some variant callers will already have added coverage information to your VCF. However, if your VCF doesn’t contain
coverage information or if you need to add coverage information for additional samples or for RNA-seq data, you can
use the vcf-readcount-annotator to do so. The vcf-readcount-annotator will take the output from
bam-readcount and use it to add readcounts to your VCF.

bam-readcount needs to be run separately for snvs and indels so it is recommended to first split multi-allelic sites by
using a tool such as vt decompose.

Installing vt

The vt tool suite can be installed by following the instructions on their page.

Installing bam-readcount

The vcf-readcount-annotator will add readcount information from bam-readcount output files to your VCF.
Therefore, you will first need to run bam-readcount to obtain a file of readcounts for your variants.

Follow the installation instructions on the bam-readcount GitHub page.

Installing the vcf-readcount-annotator

The vcf-readcount-annotator is part of the vcf-annotation-tools package. Please visit vatools.org
for more details on this package. You can install this package by running:

pip install vcf-annotation-tools

Running vt decompose

Example vt decompose command

vt decompose -s <input_vcf> -o <decomposed_vcf>

8 Chapter 1. pVACseq

https://github.com/genome/bam-readcount#build-instructions
https://genome.sph.umich.edu/wiki/Vt#Installation
https://github.com/genome/bam-readcount#build-instructions
http://vatools.org

pVACtools Documentation, Release 1.5.7

Running bam-readcount

bam-readcount uses a bam file and site list regions file as input. The site lists are created from your decomposed VCF,
one for snvs and one for indels. Snvs and indels are then run separately through bam-readcount using the same bam.
Indel regions must be run in a special insertion-centric mode.

Example bam-readcount command

bam-readcount -f <reference_fasta> -l <site_list> <bam_file> [-i] [-b 20]

The -i option must be used when running the indels site list in order to process indels in insertion-centric mode.

A minimum base quality of 20 is recommended which can be enabled using the -b 20 option.

The mgibio/bam_readcount_helper-cwl Docker container contains a bam_readcount_helper.py
script that will create the snv and indel site list files from a VCF and run bam-readcount. Information on that Docker
container can be found here: dockerhub mgibio/bam_readcount_helper-cwl.

Example bam_readcount_helper.py command

/usr/bin/python /usr/bin/bam_readcount_helper.py \
<decomposed_vcf> <sample_name> <reference_fasta> <bam_file> <output_dir>

This will write two bam-readcount files to the <output_dir>: <sample_name>_bam_readcount_snv.tsv
and <sample_name>_bam_readcount_indel.tsv, containing readcounts for the snv and indel positions,
respectively.

Running the vcf-readcount-annotator

The readcounts for snvs and indels are then added to your VCF separately, by running the
vcf-readcount-annotator twice.

Example vcf-readcount-annotator commands

vcf-readcount-annotator <decomposed_vcf> <snv_bam_readcount_file> <DNA|RNA> \
-s <sample_name> -t snv -o <snv_annotated_vcf>

vcf-readcount-annotator <snv_annotated_vcf> <indel_bam_readcount_file> <DNA|RNA> \
-s <sample_name> -t indel -o <annotated_vcf>

The data type DNA or RNA identifies whether you are annotating DNA or RNA readcount. DNA readcount annotations
will be written to the AD/DP/AF format fields while RNA readcount annotations will be written to the RAD/RDP/
RAF format fields. Please see the VAtools documentation for more information.

1.2.3 Adding expression data to your VCF

pVACseq is able to parse coverage and expression information directly from the VCF. The expected annotation format
is outlined below.

1.2. Input File Preparation 9

https://hub.docker.com/r/mgibio/bam_readcount_helper-cwl
https://vcf-annotation-tools.readthedocs.io/en/latest/vcf_readcount_annotator.html

pVACtools Documentation, Release 1.5.7

Type VCF Sample Format Fields
Transcript Expression single-sample VCF or sample_name TX
Gene Expression single-sample VCF or sample_name GX

Transcript Expression

If the VCF is a single-sample VCF, pVACseq assumes that this sample is the tumor sample. If the VCF is a multi-
sample VCF, pVACseq will look for the sample using the sample_name parameter and treat that sample as the tumor
sample.

For this tumor sample the transcript expression is determined from the TX format field. The TX format field is a
comma-separated list of per-transcript expression values, where each individual transcript expression is listed as
expression_id|expression_value, e.g. ENST00000215794|2.35912,ENST00000215795|0.2.
The expression_id needs to match the Feature field of the VEP CSQ annotation. In other words, your ex-
pression abundance estimation should have been performed with the same transcript annotation version that you used
to annotate your variants with VEP (e.g. Ensembl v95).

Gene Expression

If the VCF is a single-sample VCF, pVACseq assumes that this sample is the tumor sample. If the VCF is a multi-
sample VCF, pVACseq will look for the sample using the sample_name parameter and treat that sample as the tumor
sample.

For this tumor sample the gene expression is determined from the GX format field. The GX format field
is a comma-separated list of per-gene expression values, where each individual gene expression is listed as
gene_id|expression_value, e.g. ENSG00000184979|2.35912. The gene_id needs to match the Gene
field of the VEP CSQ annotation.

Using the vcf-expression-annotator to add expression information to your VCF

The vcf-expression-annotator will add expression information to your VCF. It will accept expression data
from various tools. Currently it supports Cufflinks, Kallisto, StringTie, as well as a custom option for any tab-delimited
file.

Installing the vcf-expression-annotator

The vcf-expression-annotator is part of the vcf-annotation-tools package (vatools.org). You can
install this package by running:

pip install vcf-annotation-tools

Running the vcf-expression-annotator

You can now use the output file from your expression caller to add expression information to your VCF:

vcf-expression-annotator input_vcf expression_file
→˓kallisto|stringtie|cufflinks|custom gene|transcript

The data type gene or transcript identifies whether you are annotating transcript or gene expression data. Tran-
script expression annotations will be written to the TX format field while gene expression annotations will be written
to the GX format field. Please see the VAtools documentation for more information.

10 Chapter 1. pVACseq

http://vatools.org
https://vcf-annotation-tools.readthedocs.io/en/latest/vcf_readcount_annotator.html

pVACtools Documentation, Release 1.5.7

1.2.4 Creating a phased VCF of proximal variants

By default, pVACseq will evaluate all somatic variants in the input VCF in isolation. As a result, if a somatic variant
of interest has other somatic or germline variants in proximity, the calculated wildtype and mutant protein sequences
might be incorrect because the amino acid changes of those proximal variants were not taken into account.

To solve this problem, we added a new option to pVACseq in the pvactools release 1.1. This option,
--phased-proximal-variants-vcf, can be used to provide the path to a phased VCF of proximal variants in
addition to the normal input VCF. This VCF is then used to incorporate amino acid changes of nearby variants that are
in-phase to a somatic variant of interest. This results in corrected mutant and wildtype protein sequences that account
for proximal variants.

At this time, this option only handles missense proximal variants but we are working on a more comprehensive
approach to this problem.

Note that if you do not perform the proximal variants step, you should manually review the sequence data for all
candidates (e.g. in IGV) for proximal variants and either account for these manually, or eliminate these candidates.
Failure to do so may lead to inclusion of incorrect peptide sequences.

How to create the phased VCF of proximal variants

Input files

• tumor.bam: A BAM file of tumor reads

• somatic.vcf: A VCF of somatic variants

• germline.vcf: A VCF of germline variants

• reference.fa: The reference FASTA file

Required tools

• Picard

• GATK

• bgzip

• tabix

Create the reference dictionary

java -jar picard.jar CreateSequenceDictionary \
R=reference.fa \
O=reference.dict

1.2. Input File Preparation 11

https://broadinstitute.github.io/picard/
https://software.broadinstitute.org/gatk/
http://www.htslib.org/doc/bgzip.html
http://www.htslib.org/doc/tabix.html

pVACtools Documentation, Release 1.5.7

Update sample names

The sample names in the tumor.bam, the somatic.vcf, and the germline.vcf need to match. If they don’t
you need to edit the sample names in the VCF files to match the tumor BAM file.

Combine somatic and germline variants using GATK’s CombineVariants

/usr/bin/java -Xmx16g -jar /opt/GenomeAnalysisTK.jar \
-T CombineVariants \
-R reference.fa \
--variant germline.vcf \
--variant somatic.vcf \
-o combined_somatic_plus_germline.vcf \
--assumeIdenticalSamples

Sort combined VCF using Picard

/usr/bin/java -Xmx16g -jar /opt/picard/picard.jar SortVcf \
I=combined_somatic_plus_germline.vcf \
O=combined_somatic_plus_germline.sorted.vcf \
SEQUENCE_DICTIONARY=reference.dict

Phase variants using GATK’s ReadBackedPhasing

/usr/bin/java -Xmx16g -jar /opt/GenomeAnalysisTK.jar \
-T ReadBackedPhasing \
-R reference.fa \
-I tumor.bam \
--variant combined_somatic_plus_germline.sorted.vcf \
-L combined_somatic_plus_germline.sorted.vcf \
-o phased.vcf

bgzip and index the phased VCF

bgzip -c phased.vcf > phased.vcf.gz
tabix -p vcf phased.vcf.gz

The resulting phased.vcf.gz file can be used as the input to the --phased-proximal-variants-vcf
option.

bgzip and index the input VCF

In order to use the --phased-proximal-variants-vcf option you will also need to bgzip and index your
main input VCF.

bgzip -c input.vcf > input.vcf.gz
tabix -p vcf input.vcf.gz

12 Chapter 1. pVACseq

pVACtools Documentation, Release 1.5.7

1.3 Getting Started

pVACseq provides a set of example data to show the expected input and output files. You can download the data set
by running the pvacseq download_example_data command.

The example data output can be reproduced by running the following command:

pvacseq run \
<example_data_dir>/input.vcf \
Test \
HLA-A*02:01,HLA-B*35:01,DRB1*11:01 \
MHCflurry MHCnuggetsI MHCnuggetsII NNalign NetMHC PickPocket SMM SMMPMBEC SMMalign \
<output_dir> \
-e 8,9,10

A detailed description of all command options can be found on the Usage page.

1.3.1 Running pVACseq using Docker

A pVACtools Docker image is available on DockerHub using the griffitlab/pvactools tag. After installing
Docker you can start an interactive Docker instance by running the following command:

docker run -it griffithlab/pvactools

Version-specific images are available and can be run like so:

docker run -it griffithlab/pvactools:<version>

In order to have access to your local data inside of the Docker container you will need to mount a local volume
inside of the container. This is done using the -v flag. For example, you can mount your /local/path/to/
example_data_dir in your container like so:

docker run -v /local/path/to/example_data_dir:/pvactools_example_data -it griffithlab/
→˓pvactools

This will mount the example_data_dir inside the container as the /pvacseq_example_data direc-
tory. When you are inside of the container you will now have access to all of the data that was inside of the
example_data_dir from the /pvaseq_example_data directory.

You will need to do the same thing for your /local/path/to/output_dir so that any output written by pVAC-
seq will be accessible from your machine outside of your Docker container.

docker run -v /local/path/to/example_data_dir:/pvacseq_example_data -v /local/path/to/
→˓output_dir:/pvacseq_output_data -it griffithlab/pvactools

You can now run your pVACseq command like so:

1.3. Getting Started 13

https://hub.docker.com/r/griffithlab/pvactools
https://docs.docker.com/install/
https://docs.docker.com/install/

pVACtools Documentation, Release 1.5.7

pvacseq run \
/pvacseq_example_data/input.vcf \
Test \
HLA-A*02:01,HLA-B*35:01,DRB1*11:01 \
MHCflurry MHCnuggetsI MHCnuggetsII NNalign NetMHC PickPocket SMM SMMPMBEC SMMalign \
/pvacseq_output_data \
-e 8,9,10
--iedb-install-directory /opt/iedb

The output from your pVACseq run can be found under /pvacseq_output_data inside of the container and
/local/path/to/output_dir on your local machine.

Please note that our Docker container already includes installations of the IEDB class I and class II tools at /opt/
iedb (--iedb-install-directory /opt/iedb).

1.4 Usage

Warning: Using a local IEDB installation is strongly recommended for larger datasets or when the making
predictions for many alleles, epitope lengths, or prediction algorithms. More information on how to install IEDB
locally can be found on the Installation page.

usage: pvacseq run [-h] [-e EPITOPE_LENGTH]
[--iedb-install-directory IEDB_INSTALL_DIRECTORY]
[-b BINDING_THRESHOLD]
[--allele-specific-binding-thresholds] [-m {lowest,median}]
[-r IEDB_RETRIES] [-k] [-t N_THREADS]
[--net-chop-method {cterm,20s}] [--netmhc-stab]
[--net-chop-threshold NET_CHOP_THRESHOLD]
[-a {sample_name}] [-s FASTA_SIZE] [--exclude-NAs]
[-l PEPTIDE_SEQUENCE_LENGTH]
[-d DOWNSTREAM_SEQUENCE_LENGTH]
[--normal-sample-name NORMAL_SAMPLE_NAME]
[-p PHASED_PROXIMAL_VARIANTS_VCF] [-c MINIMUM_FOLD_CHANGE]
[--normal-cov NORMAL_COV] [--tdna-cov TDNA_COV]
[--trna-cov TRNA_COV] [--normal-vaf NORMAL_VAF]
[--tdna-vaf TDNA_VAF] [--trna-vaf TRNA_VAF]
[--expn-val EXPN_VAL]
[--maximum-transcript-support-level {1,2,3,4,5}]
[--pass-only]
input_file sample_name allele
{MHCflurry,MHCnuggetsI,MHCnuggetsII,NNalign,NetMHC,NetMHCIIpan,

→˓NetMHCcons,NetMHCpan,PickPocket,SMM,SMMPMBEC,SMMalign}
[{MHCflurry,MHCnuggetsI,MHCnuggetsII,NNalign,NetMHC,NetMHCIIpan,

→˓NetMHCcons,NetMHCpan,PickPocket,SMM,SMMPMBEC,SMMalign} ...]
output_dir

positional arguments:
input_file A VEP-annotated single- or multi-sample VCF containing

(continues on next page)

14 Chapter 1. pVACseq

pVACtools Documentation, Release 1.5.7

(continued from previous page)

genotype, transcript, Wildtype protein sequence, and
Downstream protein sequence information.The VCF may be
gzipped (requires tabix index).

sample_name The name of the tumor sample being processed. When
processing a multi-sample VCF the sample name must be
a sample ID in the input VCF #CHROM header line.

allele Name of the allele to use for epitope prediction.
Multiple alleles can be specified using a comma-
separated list. For a list of available alleles, use:
`pvacseq valid_alleles`.

{MHCflurry,MHCnuggetsI,MHCnuggetsII,NNalign,NetMHC,NetMHCIIpan,NetMHCcons,NetMHCpan,
→˓PickPocket,SMM,SMMPMBEC,SMMalign}

The epitope prediction algorithms to use. Multiple
prediction algorithms can be specified, separated by
spaces.

output_dir The directory for writing all result files.

optional arguments:
-h, --help show this help message and exit
-e EPITOPE_LENGTH, --epitope-length EPITOPE_LENGTH

Length of subpeptides (neoepitopes) to predict.
Multiple epitope lengths can be specified using a
comma-separated list. Typical epitope lengths vary
between 8-11. Required for Class I prediction
algorithms. (default: None)

--iedb-install-directory IEDB_INSTALL_DIRECTORY
Directory that contains the local installation of IEDB
MHC I and/or MHC II. (default: None)

-b BINDING_THRESHOLD, --binding-threshold BINDING_THRESHOLD
Report only epitopes where the mutant allele has ic50
binding scores below this value. (default: 500)

--allele-specific-binding-thresholds
Use allele-specific binding thresholds. To print the
allele-specific binding thresholds run `pvacseq
allele_specific_cutoffs`. If an allele does not have a
special threshold value, the `--binding-threshold`
value will be used. (default: False)

-m {lowest,median}, --top-score-metric {lowest,median}
The ic50 scoring metric to use when filtering epitopes
by binding-threshold or minimum fold change. lowest:
Use the best MT Score and Corresponding Fold Change
(i.e. the lowest MT ic50 binding score and
corresponding fold change of all chosen prediction
methods). median: Use the median MT Score and Median
Fold Change (i.e. the median MT ic50 binding score and
fold change of all chosen prediction methods).
(default: median)

-r IEDB_RETRIES, --iedb-retries IEDB_RETRIES
Number of retries when making requests to the IEDB
RESTful web interface. Must be less than or equal to
100. (default: 5)

-k, --keep-tmp-files Keep intermediate output files. This might be useful
for debugging purposes. (default: False)

-t N_THREADS, --n-threads N_THREADS
Number of threads to use for parallelizing peptide-MHC
binding prediction calls. (default: 1)

--net-chop-method {cterm,20s}
(continues on next page)

1.4. Usage 15

pVACtools Documentation, Release 1.5.7

(continued from previous page)

NetChop prediction method to use ("cterm" for C term
3.0, "20s" for 20S 3.0). C-term 3.0 is trained with
publicly available MHC class I ligands and the authors
believe that is performs best in predicting the
boundaries of CTL epitopes. 20S is trained with in
vitro degradation data. (default: None)

--netmhc-stab Run NetMHCStabPan after all filtering and add
stability predictions to predicted epitopes. (default:
False)

--net-chop-threshold NET_CHOP_THRESHOLD
NetChop prediction threshold (increasing the threshold
results in better specificity, but worse sensitivity).
(default: 0.5)

-a {sample_name}, --additional-report-columns {sample_name}
Additional columns to output in the final report. If
sample_name is chosen, this will add a column with the
sample name in every row of the output. This can be
useful if you later want to concatenate results from
multiple individuals into a single file. (default:
None)

-s FASTA_SIZE, --fasta-size FASTA_SIZE
Number of FASTA entries per IEDB request. For some
resource-intensive prediction algorithms like
Pickpocket and NetMHCpan it might be helpful to reduce
this number. Needs to be an even number. (default:
200)

--exclude-NAs Exclude NA values from the filtered output. (default:
False)

-l PEPTIDE_SEQUENCE_LENGTH, --peptide-sequence-length PEPTIDE_SEQUENCE_LENGTH
Length of the peptide sequence to use when creating
the FASTA. (default: 21)

-d DOWNSTREAM_SEQUENCE_LENGTH, --downstream-sequence-length DOWNSTREAM_SEQUENCE_
→˓LENGTH

Cap to limit the downstream sequence length for
frameshifts when creating the FASTA file. Use 'full'
to include the full downstream sequence. (default:
1000)

--normal-sample-name NORMAL_SAMPLE_NAME
In a multi-sample VCF, the name of the matched normal
sample. (default: None)

-p PHASED_PROXIMAL_VARIANTS_VCF, --phased-proximal-variants-vcf PHASED_PROXIMAL_
→˓VARIANTS_VCF

A VCF with phased proximal variant information. Must
be gzipped and tabix indexed. (default: None)

-c MINIMUM_FOLD_CHANGE, --minimum-fold-change MINIMUM_FOLD_CHANGE
Minimum fold change between mutant (MT) binding score
and wild-type (WT) score (fold change = WT/MT). The
default is 0, which filters no results, but 1 is often
a sensible choice (requiring that binding is better to
the MT than WT peptide). This fold change is sometimes
referred to as a differential agretopicity index.
(default: 0.0)

--normal-cov NORMAL_COV
Normal Coverage Cutoff. Only sites above this read
depth cutoff will be considered. (default: 5)

--tdna-cov TDNA_COV Tumor DNA Coverage Cutoff. Only sites above this read
depth cutoff will be considered. (default: 10)

(continues on next page)

16 Chapter 1. pVACseq

pVACtools Documentation, Release 1.5.7

(continued from previous page)

--trna-cov TRNA_COV Tumor RNA Coverage Cutoff. Only sites above this read
depth cutoff will be considered. (default: 10)

--normal-vaf NORMAL_VAF
Normal VAF Cutoff. Only sites BELOW this cutoff in
normal will be considered. (default: 0.02)

--tdna-vaf TDNA_VAF Tumor DNA VAF Cutoff. Only sites above this cutoff
will be considered. (default: 0.25)

--trna-vaf TRNA_VAF Tumor RNA VAF Cutoff. Only sites above this cutoff
will be considered. (default: 0.25)

--expn-val EXPN_VAL Gene and Transcript Expression cutoff. Only sites
above this cutoff will be considered. (default: 1.0)

--maximum-transcript-support-level {1,2,3,4,5}
The threshold to use for filtering epitopes on the
Ensembl transcript support level (TSL). Keep all
epitopes with a transcript support level <= to this
cutoff. (default: 1)

--pass-only Only process VCF entries with a PASS status. (default:
False)

1.5 Output Files

The pVACseq pipeline will write its results in separate folders depending on which prediction algorithms were chosen:

• MHC_Class_I: for MHC class I prediction algorithms

• MHC_Class_II: for MHC class II prediction algorithms

• combined: If both MHC class I and MHC class II prediction algorithms were run, this folder combines the
neoeptiope predictions from both

Each folder will contain the same list of output files (listed in the order created):

File Name Description
<sample_name>.tsv An intermediate file with variant, transcript, coverage, vaf, and expression

information parsed from the input files.
<sample_name>.
tsv_<chunks> (multiple)

The above file but split into smaller chunks for easier processing with IEDB.

<sample_name>.
all_epitopes.tsv

A list of all predicted epitopes and their binding affinity scores, with additional
variant information from the <sample_name>.tsv.

<sample_name>.
filtered.tsv

The above file after applying all filters, with cleavage site and stability predic-
tions added.

<sample_name>.
filtered.condensed.
ranked.tsv

A condensed version of the filtered TSV with only the most important columns
remaining, with a priority score for each neoepitope candidate added.

1.5.1 all_epitopes.tsv and filtered.tsv Report Columns

1.5. Output Files 17

pVACtools Documentation, Release 1.5.7

Column Name Description
Chromosome The chromosome of this variant
Start The start position of this variant in the zero-based, half-open coordinate system
Stop The stop position of this variant in the zero-based, half-open coordinate system
Reference The reference allele
Variant The alt allele
Transcript The Ensembl ID of the affected transcript
Transcript Support Level The transcript support level (TSL) of the affected transcript. NA if the VCF entry doesn’t contain TSL information.
Ensembl Gene ID The Ensembl ID of the affected gene
Variant Type The type of variant. missense for missense mutations, inframe_ins for inframe insertions, inframe_del for inframe deletions, and FS for frameshift variants
Mutation The amnio acid change of this mutation
Protein Position The protein position of the mutation
Gene Name The Ensembl gene name of the affected gene
HGVSc The HGVS coding sequence variant name
HGVSp The HGVS protein sequence variant name
HLA Allele The HLA allele for this prediction
Peptide Length The peptide length of the epitope
Sub-peptide Position The one-based position of the epitope within the protein sequence used to make the prediction
Mutation Position The one-based position of the start of the mutation within the epitope sequence. 0 if the start of the mutation is before the epitope
MT Epitope Seq The mutant epitope sequence
WT Epitope Seq The wildtype (reference) epitope sequence at the same position in the full protein sequence. NA if there is no wildtype sequence at this position or if more than half of the amino acids of the mutant epitope are mutated
Best MT Score Method Prediction algorithm with the lowest mutant ic50 binding affinity for this epitope
Best MT Score Lowest ic50 binding affinity of all prediction algorithms used
Corresponding WT Score ic50 binding affinity of the wildtype epitope. NA if there is no WT Epitope Seq.
Corresponding Fold Change Corresponding WT Score / Best MT Score. NA if there is no WT Epitope Seq.
Tumor DNA Depth Tumor DNA depth at this position. NA if VCF entry does not contain tumor DNA readcount annotation.
Tumor DNA VAF Tumor DNA variant allele frequency (VAF) at this position. NA if VCF entry does not contain tumor DNA readcount annotation.
Tumor RNA Depth Tumor RNA depth at this position. NA if VCF entry does not contain tumor RNA readcount annotation.
Tumor RNA VAF Tumor RNA variant allele frequency (VAF) at this position. NA if VCF entry does not contain tumor RNA readcount annotation.
Normal Depth Normal DNA depth at this position. NA if VCF entry does not contain normal DNA readcount annotation.
Normal VAF Normal DNA variant allele frequency (VAF) at this position. NA if VCF entry does not contain normal DNA readcount annotation.
Gene Expression Gene expression value for the annotated gene containing the variant. NA if VCF entry does not contain gene expression annotation.
Transcript Expression Transcript expression value for the annotated transcript containing the variant. NA if VCF entry does not contain transcript expression annotation.
Median MT Score Median ic50 binding affinity of the mutant epitope across all prediction algorithms used
Median WT Score Median ic50 binding affinity of the wildtype epitope across all prediction algorithms used. NA if there is no WT Epitope Seq.
Median Fold Change Median WT Score / Median MT Score. NA if there is no WT Epitope Seq.
Individual Prediction Algorithm WT and MT Scores (multiple) ic50 scores for the MT Epitope Seq and WT Eptiope Seq for the individual prediction algorithms used
cterm_7mer_gravy_score Mean hydropathy of last 7 residues on the C-terminus of the peptide
max_7mer_gravy_score Max GRAVY score of any kmer in the amino acid sequence. Used to determine if there are any extremely hydrophobic regions within a longer amino acid sequence.
difficult_n_terminal_residue (T/F) Is N-terminal amino acid a Glutamine, Glutamic acid, or Cysteine?
c_terminal_cysteine (T/F) Is the C-terminal amino acid a Cysteine?
c_terminal_proline (T/F) Is the C-terminal amino acid a Proline?
cysteine_count Number of Cysteines in the amino acid sequence. Problematic because they can form disulfide bonds across distant parts of the peptide
n_terminal_asparagine (T/F) Is the N-terminal amino acid a Asparagine?
asparagine_proline_bond_count Number of Asparagine-Proline bonds. Problematic because they can spontaneously cleave the peptide
Best Cleavage Position (optional) Position of the highest predicted cleavage score
Best Cleavage Score (optional) Highest predicted cleavage score
Cleavage Sites (optional) List of all cleavage positions and their cleavage score
Predicted Stability (optional) Stability of the pMHC-I complex
Half Life (optional) Half-life of the pMHC-I complex
Stability Rank (optional) The % rank stability of the pMHC-I complex

Continued on next page

18 Chapter 1. pVACseq

https://useast.ensembl.org/info/genome/genebuild/transcript_quality_tags.html#tsl

pVACtools Documentation, Release 1.5.7

Table 1 – continued from previous page
Column Name Description
NetMHCstab allele (optional) Nearest neighbor to the HLA Allele. Used for NetMHCstab prediction

1.5. Output Files 19

pVACtools Documentation, Release 1.5.7

1.5.2 filtered.condensed.ranked.tsv Report Columns

Column Name Description
Gene Name The Ensembl gene name of the affected gene.
Mutation The amino acid change of this mutation.
Protein Position The protein position of the mutation.
HGVSc The HGVS coding sequence name.
HGVSp The HGVS protein sequence name.
HLA Allele The HLA allele for this prediction.
Mutation
Position

The one-based position of the start of the mutation within the epitope sequence. 0 if
the start of the mutation is before the epitope

MT Epitope Seq Mutant epitope sequence.
Median MT Score Median ic50 binding affinity of the mutant epitope across all prediction algorithms

used
Median WT Score Median ic50 binding affinity of the wildtype epitope across all prediction algorithms

used. NA if there is no WT Epitope Seq.
Median Fold
Change

Median WT Score / Median MT Score. NA if there is no WT Epitope Seq.

Best MT Score Lowest ic50 binding affinity of all prediction algorithms used
Corresponding WT
Score

ic50 binding affinity of the wildtype epitope. NA if there is no WT Epitope Seq.

Corresponding
Fold Change

Corresponding WT Score / Best MT Score. NA if there is no WT
Epitope Seq.

Tumor DNA Depth Tumor DNA depth at this position. NA if VCF entry does not contain tumor DNA
readcount annotation.

Tumor DNA VAF Tumor DNA variant allele frequency at this position. NA if VCF entry does not contain
tumor DNA readcount annotation.

Tumor RNA Depth Tumor RNA depth at this position. NA if VCF entry does not contain tumor RNA
readcount annotation.

Tumor RNA VAF Tumor RNA variant allele frequency at this position. NA if VCF entry does not contain
tumor RNA readcount annotation.

Gene Expression Gene expression value at this position. NA if VCF entry does not contain gene expres-
sion annotation.

Rank A priority rank for the neoepitope (best = 1).

The pVACseq Neoeptiope Priority Rank

Each of the following 4 criteria are assigned a rank-ordered value (worst = 1):

• B = Rank of the mutant IC50 binding affinity, with the lowest being the best. If the --top-score-metric
is set to median (default) the Median MT Score is used. If it is set to lowest the Best MT Score is
used.

• F = Rank of Fold Change between MT and WT alleles, with the highest being the best.

• M = Rank of mutant allele expression, calculated as (Gene Expression * Tumor RNA VAF), with the
highest being the best.

• D = Rank of Tumor DNA VAF, with the highest being the best.

A score is calculated from the above ranks with the following formula: B + F + (M * 2) + (D / 2). This
score is then converted to a rank (best = 1).

20 Chapter 1. pVACseq

pVACtools Documentation, Release 1.5.7

Note: The pVACseq rank calculation detailed above is just one of many ways to prioritize neoeptiope candidates.
The body of evidence in this area is still incomplete, and the methodology of ranking is likely to change substantially
in future releases. While we have found this ranking useful, it is not a substitute for careful curation and validation
efforts.

1.6 Filtering Commands

pVACseq currently offers four filters: a binding filter, a coverage filter, a transcript support level filter, and a top score
filter.

These filters are always run automatically as part of the pVACseq pipeline using default cutoffs.

All filters can also be run manually on the filtered.tsv file to narrow the results down further, or they can be run on the
all_epitopes.tsv file to apply different filtering thresholds.

The binding filter is used to remove neoantigen candidates that do not meet desired peptide:MHC binding criteria.
The coverage filter is used to remove variants that do not meet desired read count and VAF criteria (in normal DNA
and tumor DNA/RNA). The transcript support level filter is used to remove variant annotations based on low quality
transcript annotations. The top score filter is used to select the most promising peptide candidate for each variant.
Multiple candidate peptides from a single somatic variant can be caused by multiple peptide lengths, registers, HLA
alleles, and transcript annotations.

Further details on each of these filters is provided below.

Note: The default values for filtering thresholds are suggestions only. While they are based on review of the literature
and consultation with our clinical and immunology colleagues, your specific use case will determine the appropriate
values.

1.6.1 Binding Filter

usage: pvacseq binding_filter [-h] [-b BINDING_THRESHOLD]
[-c MINIMUM_FOLD_CHANGE] [-m {lowest,median}]
[--exclude-NAs] [-a]
input_file output_file

positional arguments:
input_file The final report .tsv file to filter.
output_file Output .tsv file containing list of filtered epitopes

based on binding affinity.

optional arguments:
-h, --help show this help message and exit
-b BINDING_THRESHOLD, --binding-threshold BINDING_THRESHOLD

Report only epitopes where the mutant allele has ic50
binding scores below this value. (default: 500)

-c MINIMUM_FOLD_CHANGE, --minimum-fold-change MINIMUM_FOLD_CHANGE

(continues on next page)

1.6. Filtering Commands 21

pVACtools Documentation, Release 1.5.7

(continued from previous page)

Minimum fold change between mutant binding score and
wild-type score. The default is 0, which filters no
results, but 1 is often a sensible option (requiring
that binding is better to the MT than WT). (default:
0)

-m {lowest,median}, --top-score-metric {lowest,median}
The ic50 scoring metric to use when filtering epitopes
by binding-threshold or minimum fold change. lowest:
Use the Best MT Score and corresponding Fold Change
(i.e. use the lowest MT ic50 binding score and
corresponding fold change of all chosen prediction
methods). median: Use the Median MT Score and Median
Fold Change (i.e. use the median MT ic50 binding score
and fold change of all chosen prediction methods).
(default: median)

--exclude-NAs Exclude NA values from the filtered output. (default:
False)

-a, --allele-specific-binding-thresholds
Use allele-specific binding thresholds. To print the
allele-specific binding thresholds run `pvacseq
allele_specific_cutoffs`. If an allele does not have a
special threshold value, the `--binding-threshold`
value will be used. (default: False)

The binding filter removes variants that don’t pass the chosen binding threshold. The user can chose whether to apply
this filter to the lowest or the median binding affinity score by setting the --top-score-metric flag. The
lowest binding affinity score is recorded in the Best MT Score column and represents the lowest ic50 score of
all prediction algorithms that were picked during the previous pVACseq run. The median binding affinity score is
recorded in the Median MT Score column and corresponds to the median ic50 score of all prediction algorithms
used to create the report. Be default, the binding filter runs on the median binding affinity.

The binding filter also offers the option to filter on Fold Change columns, which contain the ratio of the MT score
to the WT Score. This option can be activated by setting the --minimum-fold-change threshold (to require that
the mutant peptide is a better binder than the corresponding wild type peptide). If the --top-score-metric
option is set to lowest, the Corresponding Fold Change column will be used (Corresponding WT
Score/Best MT Score). If the --top-score-metric option is set to median, the Median Fold
Change column will be used (Median WT Score/Median MT Score).

By default, entries with NA values will be included in the output. This behavior can be turned off by using the
--exclude-NAs flag.

1.6.2 Coverage Filter

usage: pvacseq coverage_filter [-h] [--normal-cov NORMAL_COV]
[--tdna-cov TDNA_COV] [--trna-cov TRNA_COV]
[--normal-vaf NORMAL_VAF] [--tdna-vaf TDNA_VAF]
[--trna-vaf TRNA_VAF] [--expn-val EXPN_VAL]
[--exclude-NAs]
input_file output_file

positional arguments:
input_file The final report .tsv file to filter
output_file Output .tsv file containing list of filtered epitopes

based on coverage and expression values

(continues on next page)

22 Chapter 1. pVACseq

pVACtools Documentation, Release 1.5.7

(continued from previous page)

optional arguments:
-h, --help show this help message and exit
--normal-cov NORMAL_COV

Normal Coverage Cutoff. Sites above this cutoff will
be considered. (default: 5)

--tdna-cov TDNA_COV Tumor DNA Coverage Cutoff. Sites above this cutoff
will be considered. (default: 10)

--trna-cov TRNA_COV Tumor RNA Coverage Cutoff. Sites above this cutoff
will be considered. (default: 10)

--normal-vaf NORMAL_VAF
Normal VAF Cutoff. Sites BELOW this cutoff in normal
will be considered. (default: 0.02)

--tdna-vaf TDNA_VAF Tumor DNA VAF Cutoff. Sites above this cutoff will be
considered. (default: 0.25)

--trna-vaf TRNA_VAF Tumor RNA VAF Cutoff. Sites above this cutoff will be
considered. (default: 0.25)

--expn-val EXPN_VAL Gene and Transcript Expression cutoff. Sites above
this cutoff will be considered. (default: 1.0)

--exclude-NAs Exclude NA values from the filtered output. (default:
False)

If the input VCF contains readcount and/or expression annotations, then the coverage filter can be run again on the
filtered.tsv report file to narrow down the results even further. You can also run this filter again on the all_epitopes.tsv
report file to apply different cutoffs.

The general goals of these filters are to limit variants for neoepitope prediction to those with good read support and/or
remove possible sub-clonal variants. In some cases the input VCF may have already been filtered in this fashion. This
filter also allows for removal of variants that do not have sufficient evidence of RNA expression.

For more details on how to prepare input VCFs that contain all of these annotations, refer to the Input File Preparation
section for more information.

By default, entries with NA values will be included in the output. This behavior can be turned off by using the
--exclude-NAs flag.

1.6.3 Transcript Support Level Filter

usage: pvacseq transcript_support_level_filter [-h]
[--maximum-transcript-support-level {1,

→˓2,3,4,5}]
[--exclude-NAs]
input_file output_file

positional arguments:
input_file The all_epitopes.tsv or filtered.tsv pVACseq report

file to filter.
output_file Output .tsv file containting list of of filtered

epitopes based on transcript support level.

optional arguments:
-h, --help show this help message and exit
--maximum-transcript-support-level {1,2,3,4,5}

The threshold to use for filtering epitopes on the
transcript support level. Keep all epitopes with a
transcript support level <= to this cutoff. (default:

(continues on next page)

1.6. Filtering Commands 23

pVACtools Documentation, Release 1.5.7

(continued from previous page)

1)
--exclude-NAs Exclude NA values from the filtered output. (default:

False)

This filter is used to eliminate variant annotations based on poorly-supported transcripts. By default, only
transcripts with a transcript support level (TSL) of <=1 are kept. This threshold can be adjusted using the
--maximum-transcript-support-level parameter.

By default, entries with NA values will be included in the output. This behavior can be turned off by using the
--exclude-NAs flag.

1.6.4 Top Score Filter

usage: pvacseq top_score_filter [-h] [-m {lowest,median}]
input_file output_file

positional arguments:
input_file The final report .tsv file to filter.
output_file Output .tsv file containing only the list of the top

epitope per variant.

optional arguments:
-h, --help show this help message and exit
-m {lowest,median}, --top-score-metric {lowest,median}

The ic50 scoring metric to use for filtering. lowest:
Use the best MT Score (i.e. the lowest MT ic50 binding
score of all chosen prediction methods). median: Use
the median MT Score (i.e. the median MT ic50 binding
score of all chosen prediction methods). (default:
median)

This filter picks the top epitope for a variant. Epitopes with the same Chromosome - Start - Stop - Reference - Variant
are identified as coming from the same variant.

In order to account for different splice sites among the transcripts of a variant that would lead to different peptides, this
filter also takes into account the different transcripts returned by VEP and will return the top epitope for all transcripts
if they are non-identical. If the resulting list of top epitopes for the transcripts of a variant is identical, the epitope for
the transcript with the highest expression is returned. If this information is not available, the transcript with the lowest
Ensembl ID is returned.

By default the --top-score-metric option is set to median which will apply this filter to the Median
MT Score column and pick the epitope with the lowest median mutant ic50 score for each variant. If the
--top-score-metric option is set to lowest, the Best MT Score column is instead used to make this
determination.

It is important to note that there are several reasons why a particular variant can lead to multiple peptides with different
predicted binding affinities. The following can result in multiple peptides and/or binding predictions for a single
variant:

1. Different epitope lengths: specifying multiple epitope lengths results in similar but non-identical epitope sequences
for each variant (e.g. KLPEPCPS, KLPEPCPST, KLPEPCPSTT, KLPEPCPSTTP). 2. Different registers: pVACseq
will test epitopes where the mutation is in every position (e.g. EPCPSTTP, PEPCPSTT, LPEPCPST, KLPEPCPS,
. . .). 3. Different transcripts: in some case the peptide sequence surrounding a variant will depend on the reference
transcript sequence, particularly if there are alternative splice sites near the variant position. 4. Different HLA alleles:
the HLA allele that produces the best predicted binding affinity is chosen. 5. A homozygous somatic variant with
heterozygous proximal variants nearby may produce multiple different peptides.

24 Chapter 1. pVACseq

https://useast.ensembl.org/info/genome/genebuild/transcript_quality_tags.html#tsl

pVACtools Documentation, Release 1.5.7

The significance of choosing a single representative peptide can depend on your experimental or clinical aims. For ex-
ample, if you are planning to use short peptide sequences exactly as they were assessed for binding affinity in pVACseq
(e.g. specific 9-mers for in vitro experimental validation or perhaps a dendritic cell vaccine delivery approach) then
the selection of a specific peptide from the possibilities caused by different lengths, registers, etc. is very important. In
some cases you may wish to consider more criteria beyond which of these candidates has the best predicted binding
affinity and gets chosen by the Top Score Filter.

On the other hand, if you plan to use synthetic long peptides (SLPs) or encode your candidates in a DNA vector,
you will likely include flanking amino acids. This means that you often get a lot of the different short peptides that
correspond to slightly different lengths or registers within the longer containing sequence. In this scenario, pVACseq’s
choice of a single candidate peptide by the Top Score Filter isn’t actually that critical in the sense of losing other good
candidates, because you may get them all anyway.

One important exception to this is the rare case where the same variant leads to different peptides in different transcripts
(due to different splice site usage). If multiple transcripts are expressed and lead to distinct peptides, you may want to
include both in your final list of candidates. The top score filter supports this case, as described above. This assumes
you did not start with only a single transcript model for each gene (e.g. using the --pick option in VEP) and also that
if you are requiring transcripts with TSL=1 that there are multiple qualifying transcripts that lead to different peptide
sequences at the site of the variant. This will be fairly rare. Even though most genes have alternative transcripts, they
often have only subtle differences in open reading frame and overall protein sequence, and only differences within the
window that would influence a neoantigen candidate are consequential here.

1.7 Additional Commands

To make using pVACseq easier, several convenience methods are included in the package.

1.7.1 Download Example Data

usage: pvacseq download_example_data [-h] destination_directory

positional arguments:
destination_directory

Directory for downloading example data

optional arguments:
-h, --help show this help message and exit

1.7.2 Install VEP Plugin

usage: pvacseq install_vep_plugin [-h] vep_plugins_path

positional arguments:
vep_plugins_path Path to your VEP_plugins directory

optional arguments:
-h, --help show this help message and exit

1.7. Additional Commands 25

pVACtools Documentation, Release 1.5.7

1.7.3 List Valid Alleles

usage: pvacseq valid_alleles [-h]
[-p {MHCflurry,MHCnuggetsI,MHCnuggetsII,NNalign,NetMHC,

→˓NetMHCIIpan,NetMHCcons,NetMHCpan,PickPocket,SMM,SMMPMBEC,SMMalign}]

optional arguments:
-h, --help show this help message and exit
-p {MHCflurry,MHCnuggetsI,MHCnuggetsII,NNalign,NetMHC,NetMHCIIpan,NetMHCcons,

→˓NetMHCpan,PickPocket,SMM,SMMPMBEC,SMMalign}, --prediction-algorithm {MHCflurry,
→˓MHCnuggetsI,MHCnuggetsII,NNalign,NetMHC,NetMHCIIpan,NetMHCcons,NetMHCpan,PickPocket,
→˓SMM,SMMPMBEC,SMMalign}

The epitope prediction algorithms to use (default:
None)

1.7.4 List Allele-Specific Cutoffs

usage: pvacseq allele_specific_cutoffs [-h] [-a ALLELE]

optional arguments:
-h, --help show this help message and exit
-a ALLELE, --allele ALLELE

The allele to use (default: None)

1.8 Optional Downstream Analysis Tools

1.8.1 Generate Protein Fasta

usage: pvacseq generate_protein_fasta [-h] [--input-tsv INPUT_TSV]
[--mutant-only]
[-d DOWNSTREAM_SEQUENCE_LENGTH]
input_vcf peptide_sequence_length
output_file

positional arguments:
input_vcf A VEP-annotated single-sample VCF containing

transcript, Wildtype protein sequence, and Downstream
protein sequence information.

peptide_sequence_length
Length of the peptide sequence to use when creating
the FASTA.

output_file The output fasta file.

optional arguments:
-h, --help show this help message and exit
--input-tsv INPUT_TSV

A pVACseq all_epitopes or filtered TSV file with

(continues on next page)

26 Chapter 1. pVACseq

pVACtools Documentation, Release 1.5.7

(continued from previous page)

epitopes to use for subsetting the input VCF to
peptides of interest. Only the peptide sequences for
the epitopes in the TSV will be used when creating the
FASTA. (default: None)

--mutant-only Only output mutant peptide sequences (default: False)
-d DOWNSTREAM_SEQUENCE_LENGTH, --downstream-sequence-length DOWNSTREAM_SEQUENCE_

→˓LENGTH
Cap to limit the downstream sequence length for
frameshifts when creating the fasta file. Use 'full'
to include the full downstream sequence. (default:
1000)

This tool will extract protein sequences surrounding supported protein altering variants in an input VCF file. One use
case for this tool is to help select long peptides that contain short neoepitope candidates. For example, if pvacseq
was run to predict nonamers (9-mers) that are good binders and the user wishes to select long peptide (e.g. 24-mer)
sequences that contain the nonamer for synthesis or encoding in a DNA vector. The protein sequence extracted will
correspond to the transcript sequence used in the annotated VCF. The alteration in the VCF (e.g. a somtic missense
SNV) will be centered in the protein sequence returned (if possible). If the variant is near the beginning or end of the
CDS, it will be as close to center as possible while returning the desired protein sequence length. If the variant causes
a frameshift, the full downstream protein sequence will be returned unless the user specifies otherwise as described
above.

1.8.2 Generate Condensed, Ranked Report

usage: pvacseq generate_condensed_ranked_report [-h] [-m {lowest,median}]
input_file output_file

positional arguments:
input_file A pVACseq .all_epitopes.tsv or .filtered.tsv report

file
output_file The file path to write the condensed, ranked report

tsv to

optional arguments:
-h, --help show this help message and exit
-m {lowest,median}, --top-score-metric {lowest,median}

The ic50 scoring metric to use for ranking epitopes by
binding-threshold and minimum fold change. lowest: Use
the best MT Score and Corresponding Fold Change (i.e.
the lowest MT ic50 binding score and corresponding
fold change of all chosen prediction methods). median:
Use the median MT Score and Median Fold Change (i.e.
the median MT ic50 binding score and fold change of
all chosen prediction methods). (default: median)

This tool will produce a condensed version of the filtered TSV with only the most important columns remaining, with
a score for each neoepitope candidate added. Refer to the Output Files section for more details on the format of this
report.

1.8. Optional Downstream Analysis Tools 27

pVACtools Documentation, Release 1.5.7

1.9 Common Errors

1.9.1 Input VCF Sample Information

VCF contains more than one sample but sample_name is not set.

pVACseq supports running with a multi-sample VCF as input. However, in this case it requires the user to pick the
sample to analyze, as only variants that are called in the specified sample will be processed.

When running a multi-sample VCF the sample_name parameter is used to identify which sample to analyze. Take,
for example, the following #CHROM VCF header:

#CHROM POS ID REF ALT QUAL FILTER INFO FORMAT NORMAL
→˓TUMOR

This VCF contains two samples, NORMAL and TUMOR. Use TUMOR as the sample_name parameter to process the
tumor sample, and NORMAL to process the normal sample.

If the input VCF only contains a single sample, the sample_name parameter does not need to match the sample
name in the VCF.

sample_name not a sample ID in the #CHROM header of VCF

This error occurs when running a multi-sample VCF and the sample_name parameter doesn’t match any of the
sample IDs in the VCF #CHROM header. Take, for example, the following #CHROM header:

#CHROM POS ID REF ALT QUAL FILTER INFO FORMAT NORMAL
→˓TUMOR

All columns after FORMAT are sample identifiers that can be used as the sample_name parameter when running
pVACseq, depending on which sample the user wishes to process. Change the sample_name parameter of your
pvacseq run command to match one of them.

normal_sample_name not a sample ID in the #CHROM header of VCF

Your pvacseq run command included the --normal-sample-name parameter. However, the argument chosen
did not match any of the sample identifiers in the #CHROM header of the input VCF.

Take, for example, the following #CHROM VCF header:

#CHROM POS ID REF ALT QUAL FILTER INFO FORMAT NORMAL
→˓TUMOR

All columns after FORMAT are sample identifiers that can be used as the --normal-sample-name pa-
rameter when running pVACseq, depending on which sample is the normal sample in the VCF. Change the
--normal-sample-name parameter of your pvacseq run command to match the appropriate sample iden-
tifier.

VCF doesn’t contain any sample genotype information.

pVACseq uses the sample genotype to identified which variants were called. Therefore, while a VCF without a
FORMAT and sample column(s) is valid, it cannot be used in pVACseq. You will need to manually edit your VCF and
add a FORMAT and sample column with the GT genotype field. For more information on this formatting please see the
VCF specification for your specific VCF version.

1.9.2 Input VCF Compression and Indexing

Input VCF needs to be bgzipped when running with a proximal variants VCF.

28 Chapter 1. pVACseq

https://github.com/samtools/hts-specs

pVACtools Documentation, Release 1.5.7

When running pVACseq with the --proximal-variants-vcf argument, the main input VCF needs to be
bgzipped and tabix indexed. See the Input File Preparation section of the documentation for instructions on how
to do so.

Proximal variants VCF needs to be bgzipped.

The VCF provided via the --proximal-variants-vcf argument needs to be bgzipped and tabix indexed. See
the Input File Preparation section of the documentation for instructions on how to do so.

No .tbi file found for input VCF. Input VCF needs to be tabix indexed if processing with proximal variants.

When running pVACseq with the --proximal-variants-vcf argument, the main input VCF needs to be
bgzipped and tabix indexed. See the Input File Preparation section of the documentation for instructions on how
to do so.

No .tbi file found for proximal variants VCF. Proximal variants VCF needs to be tabix indexed.

The VCF provided via the --proximal-variants-vcf argument needs to be bgzipped and tabix indexed. See
the Input File Preparation section of the documentation for instructions on how to do so.

1.9.3 Input VCF VEP Annotation

Input VCF does not contain a CSQ header. Please annotate the VCF with VEP before running it.

pVACseq requires the input VCF to be annotated by VEP. The provided input VCF doesn’t contain a CSQ INFO
header. This indicates that it has not been annotated. The Input File Preparation section of the documentation provides
instructions on how to annotate your VCF with VEP.

VCF doesn’t contain VEP DownstreamProtein annotations. Please re-annotate the VCF with VEP and the
Wildtype and Downstream plugins.

Although the input VCF was annotated with VEP, it is missing the required annotations provided by the VEP Down-
stream plugin. The input VCF will need to be reannotated using all of the required arguments as outlined in the Input
File Preparation section of the documentation.

VCF doesn’t contain VEP WildtypeProtein annotations. Please re-annotate the VCF with VEP and the Wild-
type and Downstream plugins.

Although the input VCF was annotated with VEP, it is missing the required annotations provided by the VEP Wildtype
plugin. The input VCF will need to be reannotated using all of the required arguments as outlined in the Input File
Preparation section of the documentation.

Proximal Variants VCF does not contain a CSQ header. Please annotate the VCF with VEP before running it.

When running pVACseq with the --proximal-variants-vcf argument, that proximal variants VCF needs to
be annotated by VEP. The provided proximal variants VCF doesn’t contain a CSQ INFO header. This indicates that
it has not been annotated. The Input File Preparation section of the documentation provides instructions on how to
annotate your VCF with VEP.

There was a mismatch between the actual wildtype amino acid sequence and the expected amino acid sequence.
Did you use the same reference build version for VEP that you used for creating the VCF?

This error occurs when the reference nucleotide at a specific position is different than the Ensembl transcript nucleotide
at the same position. This results in the mutant amino acid in the Amino_acids VEP annotation being different
from the amino acid of the transcript protein sequence as predicted by the Wildtype plugin. The Amino_acids VEP
annotation is based on the reference and alternate nucleotides of the variant while the WildtypeProtein prediction
is based on the Ensembl transcript nucleotide sequence.

This points to a fundamental disagreement between the reference that was used during alignment and variant calling
and the Ensembl reference. This mismatch cannot be resolved by pVACseq, which is why this error is fatal.

Here are a few things that might resolve this error:

1.9. Common Errors 29

pVACtools Documentation, Release 1.5.7

• Checking that the build of the VEP cache matches the alignment build and downloading the correct cache if
there is a build mismatch (such as a build 38 cache with a build 37 VCF, or vice versa)

• Using the --assembly parameter during VEP annotation with the correct build version to match your VCF

• Using the fasta parameter during VEP annotation with the reference used to create the VCF

• Manually fixing the reference bases in your VCF to match the one expected by Ensembl

• Realigning and redoing variant calling on your sample with a reference that matches what is expected by VEP

If this mismatch cannot be resolved the VCF cannot be used by pVACseq.

1.9.4 Other

The TSV file is empty. Please check that the input VCF contains missense, inframe indel, or frameshift muta-
tions.

None of the variants in the VCF file are supported by pVACseq.

Illegal instruction (core dumped)

This issue may occur when you are trying to run the tensorflow-based prediction algorithms MHCnuggets and/or
MHCflurry. This indicates that your computer’s hardware does not support the version of tensorflow that is installed.
Downgrading tensorflow manually to version 1.5.0 (pip install tensorflow==1.5.0) should solve this
problem.

1.10 Frequently Asked Questions

What type of variants does pVACseq support?

pVACseq makes predictions for all transcripts of a variant that were annotated as missense_variant,
inframe_insertion, inframe_deletion, inframe protein_altering_variant, or
frameshift_variant by VEP as long as the transcript was not also annotated as start_lost. In ad-
dition, pVACseq only includes variants that were called as homozygous or heterozygous variant. Variants that were
not called in the sample specified are skipped (determined by examining the GT genotype field in the VCF).

My pVACseq command has been running for a long time. Why is that?

The rate-limiting factor in running pVACseq is the number of calls that are made to the IEDB software for binding
score predictions.

Note: It is generally faster to make IEDB calls using a local install of IEDB than using the IEDB web API. It is,
therefore, recommended to use a local IEDB install for any in-depth analysis. You should either install IEDB locally
yourself or use the pvactools docker image that includes it.

There are a number of factors that determine the number of IEDB calls to be made:

• Number of variants in your VCF

pVACseq will make predictions for each missense, inframe insertion, inframe deletion, protein altering, and
frameshift variant in your VCF.

30 Chapter 1. pVACseq

pVACtools Documentation, Release 1.5.7

Speedup suggestion: Split the VCF into smaller subsets and process each one individually, in parallel.

• Number of transcripts for each variant

pVACseq will make predictions for each transcript of a supported variant individually. The number of transcripts
for each variant depends on how VEP was run when the VCF was annotated.

Speedup suggestion: Use the --pick option when running VEP to annotate each variant with the top transcript
only.

• The --fasta-size parameter value

pVACseq takes an input VCF and creates a wildtype and a mutant FASTA for each transcript. The number of
FASTA entries that get submitted to IEDB at a time is limited by the --fasta-size parameter in order to
reduce the load on the IEDB servers. The smaller the FASTA size, the more calls have to be made to IEDB.

Speedup suggestion: When using a local IEDB install, increase the size of this parameter.

• Number of prediction algorithms, epitope lengths, and HLA-alleles

One call to IEDB is made for each combination of these parameters for each chunk of FASTA sequences. That
means, for example, when 8 prediction algorithms, 4 epitope lengths (8-11), and 6 HLA-alleles are chosen,
7*4*6=192 calls to IEDB have to be made for each chunk of FASTA.

Speedup suggestion: Reduce the number of prediction algorithms, epitope lengths, and/or HLA-alleles to the
ones that will be the most meaningful for your analysis. For example, the NetMHCcons method is already a
consensus method between NetMHC, NetMHCpan, and PickPocket. If NetMHCcons is chosen, you may want
to omit the underlying prediction methods. Likewise, if you want to run NetMHC, NetMHCpan, and PickPocket
individually, you may want to skip NetMHCcons.

• --downstream-sequence-length parameter value

This parameter determines how many amino acids of the downstream sequence after a frameshift mutation
will be included in the wildtype FASTA sequence. The shorter the downstream sequence length, the lower the
number of epitopes that IEDB needs to make binding predictions for.

Speedup suggestion: Reduce the value of this parameter.

• -t parameter value

This parameter determines the number of threads pvacseq will use for parallel processing.

Speedup suggestion: Use a host with multiple cores and sufficient memory and use a larger number of threads.

My pVACseq output file does not contain entries for all of the alleles I chose. Why is that?

There could be a few reasons why the pVACseq output does not contain predictions for alleles:

• The alleles you picked might have not been compatible with the prediction algorithm and/or epitope lengths
chosen. In that case no calls for that allele would’ve been made and a status message would’ve printed to the
screen.

• It could be that all epitope predictions for some alleles got filtered out. You can check the <sample_name>.
all_epitopes.tsv file to see all called epitopes before filtering.

Why are some values in the WT Epitope Seq column NA ?

Not all mutant epitope sequences will have a corresponding wildtype epitope sequence. This occurs when the mutant
epitope sequence is novel and a comparison is therefore not meaningful. For example:

• An epitope in the downstream portion of a frameshift might not have a corresponding wildtype epitope at the
same position at all. The epitope is completely novel.

• An epitope that overlaps an inframe indel or multinucleotide polymorphism (MNP) might have a large number
of amino acids that are different from the wildtype epitope at the corresponding position. If less than half of

1.10. Frequently Asked Questions 31

pVACtools Documentation, Release 1.5.7

the amino acids between the mutant epitope sequence and the corresponding wildtype sequence match, the
corresponding wildtype sequence in the report is set to NA.

What filters are applied during a pVACseq run?

By default we filter the neoepitopes on their binding score. If readcount and/or expression annotations are available in
the VCF we also filter on the depth, VAF, and gene/trancript FPKM. In addition, candidates where the mutant epitope
sequence is the same as the wildtype epitope sequence will also be filtered out.

How can I see all of the candidate epitopes without any filters applied?

The <sample_name>.all_epitopes.tsv will contain all of the epitopes predicted before filters are applied.

Why have some of my epitopes been filtered out even though the Best MT Score is below 500?

By default, the binding filter will be applied to the Median MT Score column. This is the median score value
among all chosen prediction algorithms. The Best MT Score column shows the lowest score among all chosen
prediction algorithms. To change this behavior and apply the binding filter to the Best MT Score column you may
set the --top-score-metric parameter to lowest.

Why are entries with NA in the VAF and depth columns not filtered?

We do not filter out NA entries for depth and VAF since there is not enough information to determine whether the
cutoff has been met one way or another.

Why do some of my epitopes have no score predictions for certain prediction methods?

Not all prediction methods support all epitope lengths or all alleles. To see a list of supported alleles for a prediction
method you may use the pvacseq valid_alleles command. For more details on each algorithm refer to the
IEDB MHC Class I and Class II documentation.

How is pVACseq licensed?

pVACseq is licensed under the open source license NPOSL-3.0. If you would like to discuss a license for commercial
applications, please contact us.

How do I cite pVACseq?

Jasreet Hundal+, Susanna Kiwala+, Joshua McMichael, Christopher A Miller, Alexander T Wollam, Huiming Xia,
Connor J Liu, Sidi Zhao, Yang-Yang Feng, Aaron P Graubert, Amber Z Wollam, Jonas Neichin, Megan Neveau, Jason
Walker, William E Gillanders, Elaine R Mardis, Obi L Griffith, Malachi Griffith. pVACtools: a computational toolkit to
select and visualize cancer neoantigens. (+)equal contribution. bioRxiv 501817; doi: https://doi.org/10.1101/501817

Jasreet Hundal, Susanna Kiwala, Yang-Yang Feng, Connor J. Liu, Ramaswamy Govindan, William C. Chapman,
Ravindra Uppaluri, S. Joshua Swamidass, Obi L. Griffith, Elaine R. Mardis, and Malachi Griffith. Accounting for
proximal variants improves neoantigen prediction. Nature Genetics. 2018, DOI: 10.1038/s41588-018-0283-9. PMID:
30510237.

Jasreet Hundal, Beatriz M. Carreno, Allegra A. Petti, Gerald P. Linette, Obi L. Griffith, Elaine R. Mardis, and Malachi
Griffith. pVACseq: A genome-guided in silico approach to identifying tumor neoantigens. Genome Medicine. 2016,
8:11, DOI: 10.1186/s13073-016-0264-5. PMID: 26825632.

32 Chapter 1. pVACseq

http://tools.iedb.org/mhci/help/#Method
http://tools.iedb.org/mhcii/help/#Method
http://opensource.org/licenses/NPOSL-3.0
https://doi.org/10.1101/501817
https://doi.org/10.1101/501817
https://doi.org/10.1101/501817
https://www.nature.com/articles/s41588-018-0283-9
https://www.nature.com/articles/s41588-018-0283-9
https://www.ncbi.nlm.nih.gov/pubmed/30510237
http://www.genomemedicine.com/content/8/1/11
http://www.ncbi.nlm.nih.gov/pubmed/26825632

CHAPTER 2

pVACbind

This component of the pVACtools is used to predict neoantigens for the peptides in a FASTA file.

2.1 Prerequisites

The input to pVACbind is a FASTA file of peptide sequences.

2.2 Getting Started

pVACbind provides a set of example data to show the expected format of input and output files. You can download the
data set by running the pvacbind download_example_data command.

The example data output can be reproduced by running the following command:

pvacbind run \
<example_data_dir>/input.fasta \
Test \
HLA-A*02:01,HLA-B*35:01,DRB1*11:01 \
MHCflurry MHCnuggetsI MHCnuggetsII NNalign NetMHC PickPocket SMM SMMPMBEC SMMalign \
<output_dir> \
-e 8,9,10

33

pVACtools Documentation, Release 1.5.7

A detailed description of all command options can be found on the Usage page.

2.3 Usage

Warning: Using a local IEDB installation is strongly recommended for larger datasets or when the making
predictions for many alleles, epitope lengths, or prediction algorithms. More information on how to install IEDB
locally can be found on the Installation page.

usage: pvacbind run [-h] [-e EPITOPE_LENGTH]
[--iedb-install-directory IEDB_INSTALL_DIRECTORY]
[-b BINDING_THRESHOLD]
[--allele-specific-binding-thresholds]
[-m {lowest,median}] [-r IEDB_RETRIES] [-k] [-t N_THREADS]
[--net-chop-method {cterm,20s}] [--netmhc-stab]
[--net-chop-threshold NET_CHOP_THRESHOLD]
[-a {sample_name}] [-s FASTA_SIZE] [--exclude-NAs]
input_file sample_name allele
{MHCflurry,MHCnuggetsI,MHCnuggetsII,NNalign,NetMHC,NetMHCIIpan,

→˓NetMHCcons,NetMHCpan,PickPocket,SMM,SMMPMBEC,SMMalign}
[{MHCflurry,MHCnuggetsI,MHCnuggetsII,NNalign,NetMHC,NetMHCIIpan,

→˓NetMHCcons,NetMHCpan,PickPocket,SMM,SMMPMBEC,SMMalign} ...]
output_dir

positional arguments:
input_file A FASTA file
sample_name The name of the sample being processed. This will be

used as a prefix for output files.
allele Name of the allele to use for epitope prediction.

Multiple alleles can be specified using a comma-
separated list. For a list of available alleles, use:
`pvacseq valid_alleles`.

{MHCflurry,MHCnuggetsI,MHCnuggetsII,NNalign,NetMHC,NetMHCIIpan,NetMHCcons,NetMHCpan,
→˓PickPocket,SMM,SMMPMBEC,SMMalign}

The epitope prediction algorithms to use. Multiple
prediction algorithms can be specified, separated by
spaces.

output_dir The directory for writing all result files.

optional arguments:
-h, --help show this help message and exit
-e EPITOPE_LENGTH, --epitope-length EPITOPE_LENGTH

Length of subpeptides (neoepitopes) to predict.
Multiple epitope lengths can be specified using a
comma-separated list. Typical epitope lengths vary
between 8-11. Required for Class I prediction
algorithms. (default: None)

--iedb-install-directory IEDB_INSTALL_DIRECTORY
Directory that contains the local installation of IEDB

(continues on next page)

34 Chapter 2. pVACbind

pVACtools Documentation, Release 1.5.7

(continued from previous page)

MHC I and/or MHC II. (default: None)
-b BINDING_THRESHOLD, --binding-threshold BINDING_THRESHOLD

Report only epitopes where the mutant allele has ic50
binding scores below this value. (default: 500)

--allele-specific-binding-thresholds
Use allele-specific binding thresholds. To print the
allele-specific binding thresholds run `pvacbind
allele_specific_cutoffs`. If an allele does not have a
special threshold value, the `--binding-threshold`
value will be used. (default: False)

-m {lowest,median}, --top-score-metric {lowest,median}
The ic50 scoring metric to use when filtering epitopes
by binding-threshold or minimum fold change. lowest:
Use the best MT Score and Corresponding Fold Change
(i.e. the lowest MT ic50 binding score and
corresponding fold change of all chosen prediction
methods). median: Use the median MT Score and Median
Fold Change (i.e. the median MT ic50 binding score and
fold change of all chosen prediction methods).
(default: median)

-r IEDB_RETRIES, --iedb-retries IEDB_RETRIES
Number of retries when making requests to the IEDB
RESTful web interface. Must be less than or equal to
100. (default: 5)

-k, --keep-tmp-files Keep intermediate output files. This might be useful
for debugging purposes. (default: False)

-t N_THREADS, --n-threads N_THREADS
Number of threads to use for parallelizing peptide-MHC
binding prediction calls. (default: 1)

--net-chop-method {cterm,20s}
NetChop prediction method to use ("cterm" for C term
3.0, "20s" for 20S 3.0). C-term 3.0 is trained with
publicly available MHC class I ligands and the authors
believe that is performs best in predicting the
boundaries of CTL epitopes. 20S is trained with in
vitro degradation data. (default: None)

--netmhc-stab Run NetMHCStabPan after all filtering and add
stability predictions to predicted epitopes. (default:
False)

--net-chop-threshold NET_CHOP_THRESHOLD
NetChop prediction threshold (increasing the threshold
results in better specificity, but worse sensitivity).
(default: 0.5)

-a {sample_name}, --additional-report-columns {sample_name}
Additional columns to output in the final report. If
sample_name is chosen, this will add a column with the
sample name in every row of the output. This can be
useful if you later want to concatenate results from
multiple individuals into a single file. (default:
None)

-s FASTA_SIZE, --fasta-size FASTA_SIZE
Number of FASTA entries per IEDB request. For some
resource-intensive prediction algorithms like
Pickpocket and NetMHCpan it might be helpful to reduce
this number. Needs to be an even number. (default:
200)

--exclude-NAs Exclude NA values from the filtered output. (default:
(continues on next page)

2.3. Usage 35

pVACtools Documentation, Release 1.5.7

(continued from previous page)

False)

2.4 Output Files

The pVACbind pipeline will write its results in separate folders depending on which prediction algorithms were chosen:

• MHC_Class_I: for MHC class I prediction algorithms

• MHC_Class_II: for MHC class II prediction algorithms

• combined: If both MHC class I and MHC class II prediction algorithms were run, this folder combines the
neoeptiope predictions from both

Each folder will contain the same list of output files (listed in the order created):

File Name Description
<sample_name>.tsv An intermediate file with variant information parsed from the input files.
<sample_name>.
tsv_<chunks> (multiple)

The above file but split into smaller chunks for easier processing with IEDB.

<sample_name>.
all_epitopes.tsv

A list of all predicted epitopes and their binding affinity scores, with additional
variant information from the <sample_name>.tsv.

<sample_name>.
filtered.tsv

The above file after applying all filters, with cleavage site and stability predictions
added.

36 Chapter 2. pVACbind

pVACtools Documentation, Release 1.5.7

2.4.1 all_epitopes.tsv and filtered.tsv Report Columns

Column Name Description
Mutation The FASTA ID of the peptide sequence the epitope belongs to
HLA Allele The HLA allele for this prediction
Sub-peptide Position The one-based position of the epitope in the protein sequence used to make the

prediction
Epitope Seq The epitope sequence
Median Score Median ic50 binding affinity of the epitope of all prediction algorithms used
Best Score Lowest ic50 binding affinity of all prediction algorithms used
Best Score Method Prediction algorithm with the lowest ic50 binding affinity for this epitope
Individual Prediction
Algorithm Scores (multi-
ple)

ic50 scores for the Epitope Seq for the individual prediction algorithms
used

cterm_7mer_gravy_score Mean hydropathy of last 7 residues on the C-terminus of the peptide
max_7mer_gravy_score Max GRAVY score of any kmer in the amino acid sequence. Used to determine

if there are any extremely hydrophobic regions within a longer amino acid se-
quence.

difficult_n_terminal_residue
(T/F)

Is N-terminal amino acid a Glutamine, Glutamic acid, or Cysteine?

c_terminal_cysteine
(T/F)

Is the C-terminal amino acid a Cysteine?

c_terminal_proline
(T/F)

Is the C-terminal amino acid a Proline?

cysteine_count Number of Cysteines in the amino acid sequence. Problematic because they
can form disulfide bonds across distant parts of the peptide

n_terminal_asparagine
(T/F)

Is the N-terminal amino acid a Asparagine?

asparagine_proline_bond_countNumber of Asparagine-Proline bonds. Problematic because they can sponta-
neously cleave the peptide

Best Cleavage
Position (optional)

Position of the highest predicted cleavage score

Best Cleavage Score
(optional)

Highest predicted cleavage score

Cleavage Sites (optional) List of all cleavage positions and their cleavage score
Predicted Stability
(optional)

Stability of the pMHC-I complex

Half Life (optional) Half-life of the pMHC-I complex
Stability Rank (optional) The % rank stability of the pMHC-I complex
NetMHCstab allele
(optional)

Nearest neighbor to the HLA Allele. Used for NetMHCstab prediction

2.5 Filtering Commands

pVACbind currently offers two filters: a binding filter and a top score filter.

2.5. Filtering Commands 37

pVACtools Documentation, Release 1.5.7

These filters are always run automatically as part of the pVACbind pipeline using default cutoffs.

All filters can also be run manually on the filtered.tsv file to narrow the results down further, or they can be run on the
all_epitopes.tsv file to apply different filtering thresholds.

The binding filter is used to remove neoantigen candidates that do not meet desired peptide:MHC binding criteria. The
top score filter is used to select the most promising peptide candidate for each variant. Multiple candidate peptides from
a single somatic variant can be caused by multiple peptide lengths, registers, HLA alleles, and transcript annotations.

Further details on each of these filters is provided below.

Note: The default values for filtering thresholds are suggestions only. While they are based on review of the literature
and consultation with our clinical and immunology colleagues, your specific use case will determine the appropriate
values.

2.5.1 Binding Filter

usage: pvacbind binding_filter [-h] [-b BINDING_THRESHOLD]
[-m {lowest,median}] [--exclude-NAs] [-a]
input_file output_file

positional arguments:
input_file The final report .tsv file to filter.
output_file Output .tsv file containing list of filtered epitopes

based on binding affinity.

optional arguments:
-h, --help show this help message and exit
-b BINDING_THRESHOLD, --binding-threshold BINDING_THRESHOLD

Report only epitopes where the mutant allele has ic50
binding scores below this value. (default: 500)

-m {lowest,median}, --top-score-metric {lowest,median}
The ic50 scoring metric to use when filtering epitopes
by binding-threshold or minimum fold change. lowest:
Use the Best MT Score and corresponding Fold Change
(i.e. use the lowest MT ic50 binding score and
corresponding fold change of all chosen prediction
methods). median: Use the Median MT Score and Median
Fold Change (i.e. use the median MT ic50 binding score
and fold change of all chosen prediction methods).
(default: median)

--exclude-NAs Exclude NA values from the filtered output. (default:
False)

-a, --allele-specific-binding-thresholds
Use allele-specific binding thresholds. To print the
allele-specific binding thresholds run `pvacbind
allele_specific_cutoffs`. If an allele does not have a
special threshold value, the `--binding-threshold`
value will be used. (default: False)

The binding filter removes variants that don’t pass the chosen binding threshold. The user can chose whether to apply
this filter to the lowest or the median binding affinity score by setting the --top-score-metric flag. The
lowest binding affinity score is recorded in the Best MT Score column and represents the lowest ic50 score of
all prediction algorithms that were picked during the previous pVACseq run. The median binding affinity score is
recorded in the Median MT Score column and corresponds to the median ic50 score of all prediction algorithms
used to create the report. Be default, the binding filter runs on the median binding affinity.

38 Chapter 2. pVACbind

pVACtools Documentation, Release 1.5.7

By default, entries with NA values will be included in the output. This behavior can be turned off by using the
--exclude-NAs flag.

2.5.2 Top Score Filter

usage: pvacbind top_score_filter [-h] [-m {lowest,median}]
input_file output_file

positional arguments:
input_file The final report .tsv file to filter.
output_file Output .tsv file containing only the list of the top

epitope per variant.

optional arguments:
-h, --help show this help message and exit
-m {lowest,median}, --top-score-metric {lowest,median}

The ic50 scoring metric to use for filtering. lowest:
Use the best MT Score (i.e. the lowest MT ic50 binding
score of all chosen prediction methods). median: Use
the median MT Score (i.e. the median MT ic50 binding
score of all chosen prediction methods). (default:
median)

This filter picks the top epitope for a variant. By default the --top-score-metric option is set to median which
will apply this filter to the Median MT Score column and pick the epitope with the lowest median mutant ic50
score for each variant. If the --top-score-metric option is set to lowest, the Best MT Score column is
instead used to make this determination.

2.6 Additional Commands

To make using pVACbind easier, several convenience methods are included in the package.

2.6.1 Download Example Data

usage: pvacbind download_example_data [-h] destination_directory

positional arguments:
destination_directory

Directory for downloading example data

optional arguments:
-h, --help show this help message and exit

2.6. Additional Commands 39

pVACtools Documentation, Release 1.5.7

2.6.2 List Valid Alleles

usage: pvacbind valid_alleles [-h]
[-p {MHCflurry,MHCnuggetsI,MHCnuggetsII,NNalign,NetMHC,

→˓NetMHCIIpan,NetMHCcons,NetMHCpan,PickPocket,SMM,SMMPMBEC,SMMalign}]

optional arguments:
-h, --help show this help message and exit
-p {MHCflurry,MHCnuggetsI,MHCnuggetsII,NNalign,NetMHC,NetMHCIIpan,NetMHCcons,

→˓NetMHCpan,PickPocket,SMM,SMMPMBEC,SMMalign}, --prediction-algorithm {MHCflurry,
→˓MHCnuggetsI,MHCnuggetsII,NNalign,NetMHC,NetMHCIIpan,NetMHCcons,NetMHCpan,PickPocket,
→˓SMM,SMMPMBEC,SMMalign}

The epitope prediction algorithms to use (default:
None)

2.6.3 List Allele-Specific Cutoffs

usage: pvacbind allele_specific_cutoffs [-h] [-a ALLELE]

optional arguments:
-h, --help show this help message and exit
-a ALLELE, --allele ALLELE

The allele to use (default: None)

40 Chapter 2. pVACbind

CHAPTER 3

pVACfuse

This component of the pVACtools workflow provides support for predicting neoantigens from gene fusions. Currently,
fusion variants as reported by INTEGRATE-Neo are supported, and any of the binding affinity prediction software
available in pVACseq can be used for binding prediction.

3.1 Prerequisites

3.1.1 Fusion detection and annotation

pVACfuse accepts two types of inputs, either an annotated bedpe file with fusion information from INTEGRATE-Neo
or a output directory from AGFusion (recommended).

AGFusion

AGFusion allows a user to annotate output files from several fusion callers using the agfusion batch command.
The below example is for annotating the output from the STAR-Fusion caller but many other fusion callers are sup-
ported. For a full list see the AGFusion documentation.

agfusion batch \
-f <star_fusion_tsv> \
-a starfusion \
-db agfusion.homo_sapiens.87.db \
- <output_directory> \
--middlestar \
--noncanonical

41

https://github.com/ChrisMaherLab/INTEGRATE-Neo
https://github.com/ChrisMaherLab/INTEGRATE-Neo
https://github.com/murphycj/AGFusion
https://github.com/murphycj/AGFusion#input-from-fusion-finding-algorithms

pVACtools Documentation, Release 1.5.7

The --middlestar flag is required in order to use the ouput with pVACfuse. This will indicate the fusion position
in the fusion peptide sequence.

The --noncanonical flag is optional and can be used to annotate the fusion with informations from all possible
transcripts. By default only canonical transcripts are used.

INTEGRATE-Neo

Fusion detection will be preformed using INTEGRATE with annotations from INTEGRATE-Neo. It should be possi-
ble to start with fusions from another caller, convert the output to bedpe format, annotate the bedpe with INTEGRATE-
Neo and then feed these candidates into pVACfuse.

1. Align RNA with Tophat2 (a requirement of INTEGRATE) to obtain accepted_hits.bam and unmapped.bam

2. (OPTIONAL) Align WGS DNA with BWA aln/sampe (NOT MEM, a requirement of INTEGRATE) to obtain
tumor.dna.bam and normal.dna.bam

3. Produce a gene annotations file with gtfToGenePred

gtfToGenePred -genePredExt -geneNameAsName2 ref.gtf ref.genePred
cut -f 1-10,12 ref.genePred > tmp.txt
echo -e "#GRCh37.ensGene.name\tGRCh37.ensGene.chrom\tGRCh37.ensGene.strand\tGRCh37.
→˓ensGene.txStart\tGRCh37.ensGene.txEnd\tGRCh37.ensGene.cdsStart\tGRCh37.ensGene.
→˓cdsEnd\tGRCh37.ensGene.exonCount\tGRCh37.ensGene.exonStarts\tGRCh37.ensGene.
→˓exonEnds\tGRCh37.ensemblToGeneName.value" > annot.txt
cat tmp.txt >> annot.txt

4. Run INTEGRATE to obtain fusions.bedpe

Integrate fusion ref.fa annot.txt bwts accepted_hits.bam unmappeds.bam [tumor.dna.bam
→˓normal.dna.bam | tumor.dna.bam]

5. Run INTEGRATE-Neo to obtain annotated fusions bedpe file

integrate-neo.py -t hla.optitype -f fusions.bedpe -r ref.fa -g ref.genePred -k

3.2 Getting Started

pVACfuse provides a set of example data to show the expected format of input and output files. You can download the
data set by running the pvacfuse download_example_data command.

There are two option as to how to run pVACfuse. It accepts either a INTEGRATE-neo output bedpe file or a AGFusion
output directory.

The following command is an example for how to run pVACfuse with an INTEGRATE-neo bedpe file and will regen-
erate the results_from_integrate_neo example data:

pvacfuse run \
<example_data_dir>/fusions.bedpe.annot \
Test \
HLA-A*02:01,HLA-B*35:01,DRB1*11:01 \

(continues on next page)

42 Chapter 3. pVACfuse

https://sourceforge.net/p/integrate-fusion/wiki/Home
https://github.com/ChrisMaherLab/INTEGRATE-Neo
https://bioconda.github.io/recipes/ucsc-gtftogenepred/README.html
https://sourceforge.net/p/integrate-fusion/wiki/Home
https://github.com/ChrisMaherLab/INTEGRATE-Neo

pVACtools Documentation, Release 1.5.7

(continued from previous page)

MHCflurry MHCnuggetsI MHCnuggetsII NNalign NetMHC PickPocket SMM SMMPMBEC SMMalign \
<output_dir> \
-e 8,9,10

The results_from_agfusion example data can be regenerated like so:

pvacfuse run \
<example_data_dir>/agfusion/ \
Test \
HLA-A*02:01,HLA-B*35:01,DRB1*11:01 \
MHCflurry MHCnuggetsI MHCnuggetsII NNalign NetMHC PickPocket SMM SMMPMBEC SMMalign \
<output_dir> \
-e 8,9,10

A detailed description of all command options can be found on the Usage page.

3.3 Usage

Warning: Using a local IEDB installation is strongly recommended for larger datasets or when the making
predictions for many alleles, epitope lengths, or prediction algorithms. More information on how to install IEDB
locally can be found on the Installation page.

usage: pvacfuse run [-h] [-e EPITOPE_LENGTH]
[--iedb-install-directory IEDB_INSTALL_DIRECTORY]
[-b BINDING_THRESHOLD]
[--allele-specific-binding-thresholds]
[-m {lowest,median}] [-r IEDB_RETRIES] [-k] [-t N_THREADS]
[--net-chop-method {cterm,20s}] [--netmhc-stab]
[--net-chop-threshold NET_CHOP_THRESHOLD]
[-a {sample_name}] [-s FASTA_SIZE] [--exclude-NAs]
[-l PEPTIDE_SEQUENCE_LENGTH]
[-d DOWNSTREAM_SEQUENCE_LENGTH]
input_file sample_name allele
{MHCflurry,MHCnuggetsI,MHCnuggetsII,NNalign,NetMHC,NetMHCIIpan,

→˓NetMHCcons,NetMHCpan,PickPocket,SMM,SMMPMBEC,SMMalign}
[{MHCflurry,MHCnuggetsI,MHCnuggetsII,NNalign,NetMHC,NetMHCIIpan,

→˓NetMHCcons,NetMHCpan,PickPocket,SMM,SMMPMBEC,SMMalign} ...]
output_dir

positional arguments:
input_file An INTEGRATE-Neo annotated bedpe file with fusions or

a AGfusion output directory.
sample_name The name of the sample being processed. This will be

used as a prefix for output files.
allele Name of the allele to use for epitope prediction.

Multiple alleles can be specified using a comma-
separated list. For a list of available alleles, use:

(continues on next page)

3.3. Usage 43

pVACtools Documentation, Release 1.5.7

(continued from previous page)

`pvacseq valid_alleles`.
{MHCflurry,MHCnuggetsI,MHCnuggetsII,NNalign,NetMHC,NetMHCIIpan,NetMHCcons,NetMHCpan,

→˓PickPocket,SMM,SMMPMBEC,SMMalign}
The epitope prediction algorithms to use. Multiple
prediction algorithms can be specified, separated by
spaces.

output_dir The directory for writing all result files.

optional arguments:
-h, --help show this help message and exit
-e EPITOPE_LENGTH, --epitope-length EPITOPE_LENGTH

Length of subpeptides (neoepitopes) to predict.
Multiple epitope lengths can be specified using a
comma-separated list. Typical epitope lengths vary
between 8-11. Required for Class I prediction
algorithms. (default: None)

--iedb-install-directory IEDB_INSTALL_DIRECTORY
Directory that contains the local installation of IEDB
MHC I and/or MHC II. (default: None)

-b BINDING_THRESHOLD, --binding-threshold BINDING_THRESHOLD
Report only epitopes where the mutant allele has ic50
binding scores below this value. (default: 500)

--allele-specific-binding-thresholds
Use allele-specific binding thresholds. To print the
allele-specific binding thresholds run `pvacfuse
allele_specific_cutoffs`. If an allele does not have a
special threshold value, the `--binding-threshold`
value will be used. (default: False)

-m {lowest,median}, --top-score-metric {lowest,median}
The ic50 scoring metric to use when filtering epitopes
by binding-threshold or minimum fold change. lowest:
Use the best MT Score and Corresponding Fold Change
(i.e. the lowest MT ic50 binding score and
corresponding fold change of all chosen prediction
methods). median: Use the median MT Score and Median
Fold Change (i.e. the median MT ic50 binding score and
fold change of all chosen prediction methods).
(default: median)

-r IEDB_RETRIES, --iedb-retries IEDB_RETRIES
Number of retries when making requests to the IEDB
RESTful web interface. Must be less than or equal to
100. (default: 5)

-k, --keep-tmp-files Keep intermediate output files. This might be useful
for debugging purposes. (default: False)

-t N_THREADS, --n-threads N_THREADS
Number of threads to use for parallelizing peptide-MHC
binding prediction calls. (default: 1)

--net-chop-method {cterm,20s}
NetChop prediction method to use ("cterm" for C term
3.0, "20s" for 20S 3.0). C-term 3.0 is trained with
publicly available MHC class I ligands and the authors
believe that is performs best in predicting the
boundaries of CTL epitopes. 20S is trained with in
vitro degradation data. (default: None)

--netmhc-stab Run NetMHCStabPan after all filtering and add
stability predictions to predicted epitopes. (default:
False)

(continues on next page)

44 Chapter 3. pVACfuse

pVACtools Documentation, Release 1.5.7

(continued from previous page)

--net-chop-threshold NET_CHOP_THRESHOLD
NetChop prediction threshold (increasing the threshold
results in better specificity, but worse sensitivity).
(default: 0.5)

-a {sample_name}, --additional-report-columns {sample_name}
Additional columns to output in the final report. If
sample_name is chosen, this will add a column with the
sample name in every row of the output. This can be
useful if you later want to concatenate results from
multiple individuals into a single file. (default:
None)

-s FASTA_SIZE, --fasta-size FASTA_SIZE
Number of FASTA entries per IEDB request. For some
resource-intensive prediction algorithms like
Pickpocket and NetMHCpan it might be helpful to reduce
this number. Needs to be an even number. (default:
200)

--exclude-NAs Exclude NA values from the filtered output. (default:
False)

-l PEPTIDE_SEQUENCE_LENGTH, --peptide-sequence-length PEPTIDE_SEQUENCE_LENGTH
Length of the peptide sequence to use when creating
the FASTA. (default: 21)

-d DOWNSTREAM_SEQUENCE_LENGTH, --downstream-sequence-length DOWNSTREAM_SEQUENCE_
→˓LENGTH

Cap to limit the downstream sequence length for
frameshifts when creating the FASTA file. Use 'full'
to include the full downstream sequence. (default:
1000)

3.4 Output Files

The pVACfuse pipeline will write its results in separate folders depending on which prediction algorithms were chosen:

• MHC_Class_I: for MHC class I prediction algorithms

• MHC_Class_II: for MHC class II prediction algorithms

• combined: If both MHC class I and MHC class II prediction algorithms were run, this folder combines the
neoeptiope predictions from both

Each folder will contain the same list of output files (listed in the order created):

3.4. Output Files 45

pVACtools Documentation, Release 1.5.7

File Name Description
<sample_name>.tsv An intermediate file with variant and transcript information parsed from the

input file(s).
<sample_name>.
tsv_<chunks> (multiple)

The above file but split into smaller chunks for easier processing with IEDB.

<sample_name>.
all_epitopes.tsv

A list of all predicted epitopes and their binding affinity scores, with additional
variant information from the <sample_name>.tsv.

<sample_name>.
filtered.tsv

The above file after applying all filters, with cleavage site and stability predic-
tions added.

<sample_name>.
filtered.condensed.
ranked.tsv

A condensed version of the filtered TSV with only the most important columns
remaining, with a priority score for each neoepitope candidate added.

3.4.1 all_epitopes.tsv and filtered.tsv Report Columns

In order to keep the outputs consistent, pVACfuse uses the same output columns as pVACseq but some of the values
will be NA if a column doesn’t apply to pVACfuse.

Column Name Description
Chromosome The chromosome of the 5p and 3p portion of the fusion, separated by ” / “
Start The start position of the 5p and 3p portion of the fusion, separated by ” / “
Stop The stop position of the 5p and 3p portion of the fusion, separated by ” / “
Reference fusion
Variant fusion
Transcript The Ensembl IDs of the affected transcripts
Transcript Support Level NA
Ensembl Gene ID NA
Variant Type The type of fusion. inframe_fusion for inframe fusions, frameshift_fusion for frameshift fusions
Mutation NA
Protein Position The position of the fusion in the fusion protein sequence
Gene Name The Ensembl gene names of the affected genes
HGVSc NA
HGVSp NA
HLA Allele The HLA allele for this prediction
Peptide Length The peptide length of the epitope
Sub-peptide Position The one-based position of the epitope in the protein sequence used to make the prediction
Mutation Position NA
MT Epitope Seq Mutant epitope sequence
WT Epitope Seq NA
Best MT Score Method Prediction algorithm with the lowest mutant ic50 binding affinity for this epitope
Best MT Score Lowest ic50 binding affinity of all prediction algorithms used
Corresponding WT Score NA
Corresponding Fold Change NA
Tumor DNA Depth NA
Tumor DNA VAF NA
Tumor RNA Depth NA
Tumor RNA VAF NA
Normal Depth NA
Normal VAF NA
Gene Expression NA

Continued on next page

46 Chapter 3. pVACfuse

pVACtools Documentation, Release 1.5.7

Table 1 – continued from previous page
Column Name Description
Transcript Expression NA
Median MT Score Median ic50 binding affinity of the mutant epitope of all prediction algorithms used
Median WT Score NA
Median Fold Change NA
Individual Prediction Algorithm WT and MT Scores (multiple) ic50 scores for the MT Epitope Seq and WT Epitope Seq for the individual prediction algorithms used
cterm_7mer_gravy_score Mean hydropathy of last 7 residues on the C-terminus of the peptide
max_7mer_gravy_score Max GRAVY score of any kmer in the amino acid sequence. Used to determine if there are any extremely hydrophobic regions within a longer amino acid sequence.
difficult_n_terminal_residue (T/F) Is N-terminal amino acid a Glutamine, Glutamic acid, or Cysteine?
c_terminal_cysteine (T/F) Is the C-terminal amino acid a Cysteine?
c_terminal_proline (T/F) Is the C-terminal amino acid a Proline?
cysteine_count Number of Cysteines in the amino acid sequence. Problematic because they can form disulfide bonds across distant parts of the peptide
n_terminal_asparagine (T/F) Is the N-terminal amino acid a Asparagine?
asparagine_proline_bond_count Number of Asparagine-Proline bonds. Problematic because they can spontaneously cleave the peptide
Best Cleavage Position (optional) Position of the highest predicted cleavage score
Best Cleavage Score (optional) Highest predicted cleavage score
Cleavage Sites (optional) List of all cleavage positions and their cleavage score
Predicted Stability (optional) Stability of the pMHC-I complex
Half Life (optional) Half-life of the pMHC-I complex
Stability Rank (optional) The % rank stability of the pMHC-I complex
NetMHCstab allele (optional) Nearest neighbor to the HLA Allele. Used for NetMHCstab prediction

3.4.2 filtered.condensed.ranked.tsv Report Columns

Column Name Description
Gene Name The Ensembl gene names of the affected genes
Mutation NA
Protein Position The position of the fusion in the fusion protein sequence
HGVSc NA
HGVSp NA
HLA Allele The HLA allele for this prediction.
Mutation Position NA
MT Epitope Seq Mutant epitope sequence.
Median MT Score Median ic50 binding affinity of the mutant epitope across all prediction algo-

rithms used
Median WT Score NA
Median Fold Change NA
Best MT Score Lowest ic50 binding affinity of all prediction algorithms used
Corresponding WT Score NA
Corresponding Fold
Change

NA

Tumor DNA Depth NA
Tumor DNA VAF NA
Tumor RNA Depth NA
Tumor RNA VAF NA
Gene Expression NA
Rank A priority rank for the neoepitope (best = 1).

3.4. Output Files 47

pVACtools Documentation, Release 1.5.7

The pVACfuse Neoeptiope Priority Rank

The underlying formula for calculating the pVACfuse rank is the same as it is for The pVACseq Neoeptiope Priority
Rank. However, since only the binding affinity is available for fusion predictions, the pVACfuse simply ranks the
neoeptiopes according to their binding affinity, with the lowest being the best. If the --top-score-metric is set
to median (default) the Median MT Score is used. If it is set to lowest the Best MT Score is used.

3.5 Filtering Commands

pVACfuse currently offers two filters: a binding filter and a top score filter.

The binding filter and top score filter are always run automatically as part of the pVACfuse pipeline.

All filters can also be run manually to narrow the final results down further or to redefine the filters entirely and produce
a new candidate list from the all_epitopes.tsv file.

Note: The default values for filtering thresholds are suggestions only. While they are based on review of the literature
and consultation with our clinical and immunology colleagues, your specific use case will determine the appropriate
values.

3.5.1 Binding Filter

usage: pvacfuse binding_filter [-h] [-b BINDING_THRESHOLD]
[-m {lowest,median}] [--exclude-NAs] [-a]
input_file output_file

positional arguments:
input_file The final report .tsv file to filter.
output_file Output .tsv file containing list of filtered epitopes

based on binding affinity.

optional arguments:
-h, --help show this help message and exit
-b BINDING_THRESHOLD, --binding-threshold BINDING_THRESHOLD

Report only epitopes where the mutant allele has ic50
binding scores below this value. (default: 500)

-m {lowest,median}, --top-score-metric {lowest,median}
The ic50 scoring metric to use when filtering epitopes
by binding-threshold or minimum fold change. lowest:
Use the Best MT Score and corresponding Fold Change
(i.e. use the lowest MT ic50 binding score and
corresponding fold change of all chosen prediction
methods). median: Use the Median MT Score and Median
Fold Change (i.e. use the median MT ic50 binding score
and fold change of all chosen prediction methods).
(default: median)

--exclude-NAs Exclude NA values from the filtered output. (default:

(continues on next page)

48 Chapter 3. pVACfuse

pVACtools Documentation, Release 1.5.7

(continued from previous page)

False)
-a, --allele-specific-binding-thresholds

Use allele-specific binding thresholds. To print the
allele-specific binding thresholds run `pvacfuse
allele_specific_cutoffs`. If an allele does not have a
special threshold value, the `--binding-threshold`
value will be used. (default: False)

The binding filter filters out variants that don’t pass the chosen binding threshold. The user can chose whether to apply
this filter to the lowest or the median binding affinity score by setting the --top-score-metric flag. The
lowest binding affinity score is recorded in the Best MT Score column and represents the lowest ic50 score of
all prediction algorithms that were picked during the previous pVACseq run. The median binding affinity score is
recorded in the Median MT Score column and corresponds to the median ic50 score of all prediction algorithms
used to create the report. Be default, the binding filter runs on the median binding affinity.

By default, entries with NA values will be included in the output. This behavior can be turned off by using the
--exclude-NAs flag.

3.5.2 Top Score Filter

usage: pvacfuse top_score_filter [-h] [-m {lowest,median}]
input_file output_file

positional arguments:
input_file The final report .tsv file to filter.
output_file Output .tsv file containing only the list of the top

epitope per variant.

optional arguments:
-h, --help show this help message and exit
-m {lowest,median}, --top-score-metric {lowest,median}

The ic50 scoring metric to use for filtering. lowest:
Use the best MT Score (i.e. the lowest MT ic50 binding
score of all chosen prediction methods). median: Use
the median MT Score (i.e. the median MT ic50 binding
score of all chosen prediction methods). (default:
median)

This filter picks the top epitope for a variant. Epitopes with the same Chromosome - Start - Stop - Reference - Variant
are identified as coming from the same variant.

In order to account for different splice sites among the transcripts of a variant that would lead to different peptides,
this filter also takes into account the different transcripts returned by Integrate-Neo/AGFusion and will return the top
epitope for all transcripts if they are non-identical. If the resulting list of top epitopes for the transcripts of a variant is
identical, the epitope for the transcript with the lowest Ensembl ID is returned.

By default the --top-score-metric option is set to median which will apply this filter to the Median
MT Score column and pick the epitope with the lowest median mutant ic50 score for each variant. If the
--top-score-metric option is set to lowest, the Best MT Score column is instead used to make this
determination.

If there are multiple top epitopes for a variant with the same ic50 score, the first one is chosen.

3.5. Filtering Commands 49

pVACtools Documentation, Release 1.5.7

3.6 Additional Commands

To make using pVACfuse easier, several convenience methods are included in the package.

3.6.1 Download Example Data

usage: pvacfuse download_example_data [-h] destination_directory

positional arguments:
destination_directory

Directory for downloading example data

optional arguments:
-h, --help show this help message and exit

3.6.2 List Valid Alleles

usage: pvacfuse valid_alleles [-h]
[-p {MHCflurry,MHCnuggetsI,MHCnuggetsII,NNalign,NetMHC,

→˓NetMHCIIpan,NetMHCcons,NetMHCpan,PickPocket,SMM,SMMPMBEC,SMMalign}]

optional arguments:
-h, --help show this help message and exit
-p {MHCflurry,MHCnuggetsI,MHCnuggetsII,NNalign,NetMHC,NetMHCIIpan,NetMHCcons,

→˓NetMHCpan,PickPocket,SMM,SMMPMBEC,SMMalign}, --prediction-algorithm {MHCflurry,
→˓MHCnuggetsI,MHCnuggetsII,NNalign,NetMHC,NetMHCIIpan,NetMHCcons,NetMHCpan,PickPocket,
→˓SMM,SMMPMBEC,SMMalign}

The epitope prediction algorithms to use (default:
None)

3.6.3 List Allele-Specific Cutoffs

usage: pvacfuse allele_specific_cutoffs [-h] [-a ALLELE]

optional arguments:
-h, --help show this help message and exit
-a ALLELE, --allele ALLELE

The allele to use (default: None)

50 Chapter 3. pVACfuse

pVACtools Documentation, Release 1.5.7

3.7 Optional Downstream Analysis Tools

3.7.1 Generate Protein Fasta

usage: pvacfuse [-h]
{run,binding_filter,top_score_filter,generate_protein_fasta,valid_

→˓alleles,allele_specific_cutoffs,download_example_data}
...

positional arguments:
{run,binding_filter,top_score_filter,generate_protein_fasta,valid_alleles,allele_

→˓specific_cutoffs,download_example_data}
run Runs the pVACfuse pipeline
binding_filter Filters variants processed by IEDB by binding score
top_score_filter Pick the best neoepitope for each variant
generate_protein_fasta

Generate an annotated fasta file from Integrate-Neo or
AGFusion output

valid_alleles Shows a list of valid allele names
allele_specific_cutoffs

Show the allele specific cutoffs
download_example_data

Downloads example input and output files

optional arguments:
-h, --help show this help message and exit

Error: No command specified

This tool will extract protein sequences surrounding fusion variant in an by parsing Integrate-Neo or AGFusion output.
One use case for this tool is to help select long peptides that contain short neoepitope candidates. For example, if
pvacfuse was run to predict nonamers (9-mers) that are good binders and the user wishes to select long peptide (e.g.
24-mer) sequences that contain the nonamer for synthesis or encoding in a DNA vector. The fusion position will be
centered in the protein sequence returned (if possible). If the fusion causes a frameshift, the full downstream protein
sequence will be returned unless the user specifies otherwise as described above.

3.7. Optional Downstream Analysis Tools 51

pVACtools Documentation, Release 1.5.7

52 Chapter 3. pVACfuse

CHAPTER 4

pVACvector

pVACvector is designed to aid specifically in the construction of DNA vector based personalized cancer vaccines. It
takes as input either a pVACseq output tsv file or a FASTA file containing peptide sequences and returns a peptide
ordering that minimizes the effects of junctional epitopes (that may create novel peptides) between the sequences. It
does this by using the core pVACseq services to predict the binding scores for each junctional peptide separated by a
spacer amino acid sequence that may help to eliminate junctional epitopes. The list of spacers to be tested is specified
using the --spacers parameter. Peptide combinations without a spacer can be tested by including None in the list
of spacers.

Peptide junctions are tested with each spacer in the order that they are specified. If a valid peptide ordering is found
that doesn’t result in any well-binding junction epitopes, that ordering is returned. No other spacer are tested, even if
they could potentially result in better junction scores. This reduces runtime. If no valid path is found, the next spacer
in the input list is tested. The default spacer amino acid sequences are “None”, “AAY”, “HHHH”, “GGS”, “GPGPG”,
“HHAA”, “AAL”, “HH”, “HHC”, “HHH”, “HHHD”, “HHL”, “HHHC”.

The final vaccine ordering is achieved through a simulated annealing procedure that returns a near-optimal solution,
when one exists.

4.1 Prerequisites

There are two options for the input file when running the pVACvector tool:

• A FASTA file. This file contains protein sequences of candidate neoepitopes to use for vector design.

• A pVACseq output TSV. This file has been filtered to include only the neoepitopes to use for vector design.
If this file type is used, it is also necessary to provide the original VCF used in the pVACseq run via the
--input_vcf option. Output TSVs from MHC Class I and Class II pVACseq results can be combined into
one by concatenating the two files and removing the duplicate header line.

53

pVACtools Documentation, Release 1.5.7

Note that if you supply a FASTA file of peptides, these peptides will be used directly in the analysis and used in the
final output. However, if you use a pvacseq TSV and variants VCF then the length of peptides extracted for junctional
epitope testing and reporting in your output will be determined by the --input-n-mer option.

4.2 Getting Started

pVACvector provides a set of example data to show the expected input and output files. You can download the data set
by running the pvacfuse download_example_data command.

There are two option as to how to run pVACvector depending on the input file type used. You can either use a pVACseq
output TSV of neoepitopes or a FASTA file of peptide sequences.

Here is an example of how to run pVACvector with a pVACseq output TSV:

pvacvector run \
<example_data_dir>/input.tsv \
Test \
HLA-A*02:01,HLA-B*35:01,DRB1*11:01 \
MHCflurry MHCnuggetsI MHCnuggetsII NNalign NetMHC PickPocket SMM SMMPMBEC SMMalign \
<output_dir> \
-e 8,9,10 \
-v <example_data_dir>/input.vcf

In this example pVACvector is run with an input FASTA file:

pvacvector run \
<example_data_dir>/input.fa \
Test \
HLA-A*02:01,HLA-B*35:01,DRB1*11:01 \
MHCflurry MHCnuggetsI MHCnuggetsII NNalign NetMHC PickPocket SMM SMMPMBEC SMMalign \
<output_dir> \
-e 8,9,10

A detailed description of all command options can be found on the Usage page.

4.3 Usage

Warning: Using a local IEDB installation is strongly recommended for larger datasets or when the making
predictions for many alleles, epitope lengths, or prediction algorithms. More information on how to install IEDB
locally can be found on the Installation page.

54 Chapter 4. pVACvector

pVACtools Documentation, Release 1.5.7

It may be necessary to explore the parameter space a bit when running pVACvector. As binding predictions for some
sites vary substantially across algorithms, the most conservative settings may result in no valid paths, often due to one
“outlier” prediction. Carefully choosing which predictors to run may help ameliorate this issue as well.

In general, setting a lower binding threshold (e.g., 500nM) and using the median binding value
(--top-score-metric median) will lead to greater possibility of a design, while more conservative settings
of 1000nM and lowest/best binding value (--top-score-metric lowest) will give more confidence that there
are no junctional neoepitopes.

Our current recommendation is to run pVACvector several different ways, and choose the path resulting from the most
conservative set of parameters.

usage: pvacvector run [-h] [-e EPITOPE_LENGTH]
[--iedb-install-directory IEDB_INSTALL_DIRECTORY]
[-b BINDING_THRESHOLD]
[--allele-specific-binding-thresholds]
[-m {lowest,median}] [-r IEDB_RETRIES] [-k]
[-t N_THREADS] [-v INPUT_VCF] [-n INPUT_N_MER]
[--spacers SPACERS] [--max-clip-length MAX_CLIP_LENGTH]
input_file sample_name allele
{MHCflurry,MHCnuggetsI,MHCnuggetsII,NNalign,NetMHC,NetMHCIIpan,

→˓NetMHCcons,NetMHCpan,PickPocket,SMM,SMMPMBEC,SMMalign}
[{MHCflurry,MHCnuggetsI,MHCnuggetsII,NNalign,NetMHC,NetMHCIIpan,

→˓NetMHCcons,NetMHCpan,PickPocket,SMM,SMMPMBEC,SMMalign} ...]
output_dir

positional arguments:
input_file A .fa file with peptides or a pVACseq .tsv file with

epitopes to use for vector design.
sample_name The name of the sample being processed. This will be

used as a prefix for output files.
allele Name of the allele to use for epitope prediction.

Multiple alleles can be specified using a comma-
separated list. For a list of available alleles, use:
`pvacseq valid_alleles`.

{MHCflurry,MHCnuggetsI,MHCnuggetsII,NNalign,NetMHC,NetMHCIIpan,NetMHCcons,NetMHCpan,
→˓PickPocket,SMM,SMMPMBEC,SMMalign}

The epitope prediction algorithms to use. Multiple
prediction algorithms can be specified, separated by
spaces.

output_dir The directory for writing all result files.

optional arguments:
-h, --help show this help message and exit
-e EPITOPE_LENGTH, --epitope-length EPITOPE_LENGTH

Length of subpeptides (neoepitopes) to predict.
Multiple epitope lengths can be specified using a
comma-separated list. Typical epitope lengths vary
between 8-11. Required for Class I prediction
algorithms. (default: None)

--iedb-install-directory IEDB_INSTALL_DIRECTORY
Directory that contains the local installation of IEDB
MHC I and/or MHC II. (default: None)

-b BINDING_THRESHOLD, --binding-threshold BINDING_THRESHOLD
Report only epitopes where the mutant allele has ic50
binding scores below this value. (default: 500)

--allele-specific-binding-thresholds
Use allele-specific binding thresholds. To print the

(continues on next page)

4.3. Usage 55

pVACtools Documentation, Release 1.5.7

(continued from previous page)

allele-specific binding thresholds run `pvacvector
allele_specific_cutoffs`. If an allele does not have a
special threshold value, the `--binding-threshold`
value will be used. (default: False)

-m {lowest,median}, --top-score-metric {lowest,median}
The ic50 scoring metric to use when filtering epitopes
by binding-threshold or minimum fold change. lowest:
Use the best MT Score and Corresponding Fold Change
(i.e. the lowest MT ic50 binding score and
corresponding fold change of all chosen prediction
methods). median: Use the median MT Score and Median
Fold Change (i.e. the median MT ic50 binding score and
fold change of all chosen prediction methods).
(default: median)

-r IEDB_RETRIES, --iedb-retries IEDB_RETRIES
Number of retries when making requests to the IEDB
RESTful web interface. Must be less than or equal to
100. (default: 5)

-k, --keep-tmp-files Keep intermediate output files. This might be useful
for debugging purposes. (default: False)

-t N_THREADS, --n-threads N_THREADS
Number of threads to use for parallelizing peptide-MHC
binding prediction calls. (default: 1)

-v INPUT_VCF, --input_vcf INPUT_VCF
Path to original pVACseq input VCF file. Required if
input file is a pVACseq TSV. (default: None)

-n INPUT_N_MER, --input-n-mer INPUT_N_MER
Length of the peptide sequence to use when creating
the FASTA from the pVACseq TSV. (default: 25)

--spacers SPACERS Comma-separated list of spacers to use for testing
junction epitopes. Include None to test junctions
without spacers. Peptide combinations will be tested
with each spacer in the order specified. (default: Non
e,AAY,HHHH,GGS,GPGPG,HHAA,AAL,HH,HHC,HHH,HHHD,HHL,HHHC
)

--max-clip-length MAX_CLIP_LENGTH
Number of amino acids to permit clipping from the
start and/or end of peptides in order to test novel
junction epitopes when the first pass on the full
peptide fails. (default: 3)

4.4 Additional Commands

To make using pVACvector easier, several convenience methods are included in the package.

4.4.1 Creating Vector Visualization

By default, pVACvector will create a visualization of the vector design result. For this to happen, the DISPLAY
environment variable has to be set. This is often not the case, for example, when running pVACvector on a compute

56 Chapter 4. pVACvector

pVACtools Documentation, Release 1.5.7

cluster. We provide this convenience method to create the visualization graphic from a successful pVACvector result
FASTA file on any machine that has the DISPLAY environment variable set.

usage: pvacvector visualize [-h] [-s SPACERS] input_fasta output_directory

positional arguments:
input_fasta A pVACvector result FASTA file to visualize
output_directory The output directory to save the visualization graphic

to

optional arguments:
-h, --help show this help message and exit
-s SPACERS, --spacers SPACERS

Comma-separated list of peptides that are used as
spacers in the pVACvector result fasta file (default:
AAY,HHHH,GGS,GPGPG,HHAA,AAL,HH,HHC,HHH,HHHD,HHL,HHHC)

4.4.2 Download Example Data

usage: pvacvector download_example_data [-h] destination_directory

positional arguments:
destination_directory

Directory for downloading example data

optional arguments:
-h, --help show this help message and exit

4.4.3 List Valid Alleles

usage: pvacvector valid_alleles [-h]
[-p {MHCflurry,MHCnuggetsI,MHCnuggetsII,NNalign,

→˓NetMHC,NetMHCIIpan,NetMHCcons,NetMHCpan,PickPocket,SMM,SMMPMBEC,SMMalign}]

optional arguments:
-h, --help show this help message and exit
-p {MHCflurry,MHCnuggetsI,MHCnuggetsII,NNalign,NetMHC,NetMHCIIpan,NetMHCcons,

→˓NetMHCpan,PickPocket,SMM,SMMPMBEC,SMMalign}, --prediction-algorithm {MHCflurry,
→˓MHCnuggetsI,MHCnuggetsII,NNalign,NetMHC,NetMHCIIpan,NetMHCcons,NetMHCpan,PickPocket,
→˓SMM,SMMPMBEC,SMMalign}

The epitope prediction algorithms to use (default:
None)

4.4.4 List Allele-Specific Cutoffs

usage: pvacvector allele_specific_cutoffs [-h] [-a ALLELE]

optional arguments:
-h, --help show this help message and exit
-a ALLELE, --allele ALLELE

The allele to use (default: None)

4.4. Additional Commands 57

pVACtools Documentation, Release 1.5.7

4.5 Output Files

File Name Description
vector_input.fa (op-
tional)

An intermediate file with vaccine peptide sequences created from the epitopes in a
pVACseq output file.

<sample_name>_results.
fa

The final output file with the peptide sequences and best spacers in the optimal
order.

vector.jpg A JPEG visualization of the above result.

Fig. 1: pVACvector result visualization example

58 Chapter 4. pVACvector

CHAPTER 5

pVACviz

pVACviz is a browser-based, graphical user interface for the pVACtools command line tools. It currently supports
starting and managing pVACseq runs as well as visualizing the results of your runs.

5.1 Installation

pVACviz is part of the pVACtools package. To install pVACtools, execute the following command on your Terminal:

pip install pvactools

More detailed installation instructions can be found here. Note that the following are the bare minimum you need to
run pVACviz. Most users will probably just want to complete the full pvactools install as described here. That includes
pVACviz along with all the other components, local installation of IEDB, etc. You can also use the pvactools docker
container which contains all tools and their dependencies (including those for pVACviz).

5.1.1 MHCflurry

When installing pVACtools for the first time, you will need to manually download the MHCflurry dataset:

mhcflurry-downloads fetch

5.1.2 PostgreSQL

pVACviz requires a Postgres database. To install Postgres follow the installation instructions.

Note: On Debian-based Linux distributions version Postgres V9.6 or lower is required.

59

http://postgresguide.com/setup/install.html

pVACtools Documentation, Release 1.5.7

5.2 Running pVACviz

To run pVACviz you first need to start pVACapi, which is used to communicate between the user interface and the
command line tool. pVACapi can be started by executing the following command on the command line:

pvacapi

Depending on the number of completed and running processes it must check, the API may take several seconds to start
up. After pVACapi has started, launch pVACviz in a separate terminal window by executing the following command
on the command line:

pvacviz

This command will start a HTTP server that provides the web client files and assets, and opens up the client in the
default web browser specified by your operating system. In some cases, pvacviz will not be able to automatically
open the web browser. If no browser launches after starting pvacviz, you will need to manually load the URL,
http://localhost:4200/, in a Firefox, Chrome, or Safari browser. If you are running pVACviz on a public instance, to
access it over the web you will need to replace localhost with the correct IP address (or associated domain name).

5.3 pVACapi Directories

Fig. 1: pVACapi directories

pVACviz, in order to provide all its features, communicates with a
pVACtools component called pVACapi. pVACapi serves as an inter-
face between pVACviz and the pVACseq pipeline proceses, launching
pVACseq processes, managing them as they execute, and generating
the visualizations that pVACviz displays.

Upon installation, pVACapi creates several directories in the user’s
home directory in ~/pVAC-Seq/. These directories are used to hold in-
put files to pVACseq processes, results files for visualization, archives,
and exported projects. Additionally two hidden directories controlled
by pVACapi are used to store files related to managing and running
processes.

5.3.1 /archive

pVACviz provides an archive function within its Manage section.
When processes are archived they are placed in this archive folder.

60 Chapter 5. pVACviz

pVACtools Documentation, Release 1.5.7

5.3.2 /export

pVACviz provides an export function within its Manage section. When processes are exported they are placed in this
export folder.

5.3.3 /input

The pVACviz Start form has Input VCF and Phased Proximal Variant fields that accept VCF files. The selectors for
these fields list all relevant files placed within the ~/input directory. You may sort these files into directories of any
depth and the selectors will keep them grouped by directory.

5.3.4 /visualize

The Visualize feature allows users to visualize any pVACseq result TSV files. Any pVACseq TSV file placed in this
/visualize folder will be displayed on the Visualize page in the right column. Directory structures will be preserved so
that users may group files in whatever manner they wish.

5.3.5 /.processes

This is a hidden directory used to store all files related to processes that pVACapi is actively managing. These are the
processes listed on the Manage page. You shouldn’t touch anything in this directory. Instead, to gain access to these
files use the Export or Archive function available in the pVACviz Manage section.

5.3.6 /.tmp

This hidden directory is used by pVACapi to store temporary artifacts of the pVACseq pipeline. Editing or deleting
anything in this directory may disrupt running pVACseq processes.

5.4 Starting Processes

pVACviz provides a helpful form for specifying all of the parameters for a pVACseq process, as an alternative to
constructing these commands and executing them via the command line.

5.4.1 Populating and Submitting the Start Form

The form is divided into two sections: required and optional parameters. To be submitted, all required fields must be
filled and validated. Optional parameters are pre-filled with sensible defaults - the same defaults that would be applied
when submitting processes via the command line.

The form provides feedback as to which fields remain to be filled and validated, both with a red highlight and message
around fields in question, and at the bottom of the form with a list of incomplete or invalid fields.

Once all the required form fields are completed with valid values, the Submit Process button is activated. Clicking on
this button will submit the process to pVACapi. Clicking the Reset button will restore the form to its initial pristine
state.

5.4. Starting Processes 61

pVACtools Documentation, Release 1.5.7

Fig. 2: pVACviz start form

62 Chapter 5. pVACviz

pVACtools Documentation, Release 1.5.7

5.4.2 Notes

• The Input VCF and Phased Proximal Variant VCF fields require the selection of VCF files. These selectors list
all VCF files within the /input folder found within the ~/pVACseq directory located in the user’s home directory.

• The alleles selector only shows alleles relevant to selected prediction algorithms. Choose prediction algorithms
to enable and populate the alleles selector.

5.5 Managing Processes

With its management interface users may manage processes launched with pVACviz. The Management section of the
application is comprised of two pages: a list page that shows all the currently managed processes; and a detail page
that displays all of the details of an individual process.

5.5.1 Displaying All Managed Processes

When you click on the Manage link in the sidebar you will be presented with a table containing a paged list of all
currently managed processes.

The process table displays each Process’ ID, Status, Sample Name, and Input File and provides a link to the detailed
view of each process. A paging interface allows you to page through all running processes.

Each row provides an actions popup menu allowing you to stop, restart, export, archive, and delete processes. Clicking
on the three dots at the left side of every row will display a menu of actions that can be applied to the process on that
row. See below for a table detailing the actions available to you.

5.5.2 Displaying Process Details

Clicking on the Details link from the main Manage page in a process row displays the Process Detail page shown below.
On this page you may view all the details of a process: its log, pVACseq command line arguments, and associated
files. Any visualizable files will be shown with a Visualize link which, when clicked, will load the visualization for
that results file.

All commands available in the process table are also available here in the header: stop, restart, export, archive and
delete. See the table below for more details on these actions.

5.5.3 Process Actions

Both the process list table and process detail page provide actions for users to manage pVACseq processes. The process
table makes these actions available in its action menu, displayed by clicking on the three dots on the left of every row.
The process detail page provides buttons in its header to invoke process actions.

5.5. Managing Processes 63

pVACtools Documentation, Release 1.5.7

Fig. 3: pVACviz Process List on Manage page

64 Chapter 5. pVACviz

pVACtools Documentation, Release 1.5.7

Fig. 4: pVACviz process detail display

5.5. Managing Processes 65

pVACtools Documentation, Release 1.5.7

Ac-
tion

Description

Stop Stops a running process. Note that a process must be stopped before it can be restarted, exported, archived,
or deleted.

RestartRestarts a running process. Note that all progress will be lost; pVACseq does not yet restart processes at the
point they were stopped.

Ex-
port

Exports all a process’ config, log, intermediate, and final results files (if any) to the /export directory. The
process will remain in the set of pVACapi managed processes.

ArchiveSimilar to Export, Archive moves all process config, log, intermediate, and final results files (if any) to the
/archive directory. Unlike Export, Archive removes the process from pVACapi’s set of managed processes.

Delete Deletes all process files and directories and removes it from pVACapi’s set of managed proceses. Be careful!
This action is not undoable.

5.6 Visualizing Processes

pVACviz provides a results visualization for exploring the results of pVACseq processes. It is able to visualize both
the results from processes launched from pVACviz and results from any pVACseq process.

5.6.1 Visualizing Completed Processes

You may view visualizations of completed pVACseq processes launched from the pVACviz Start form from two
locations within the application. The Manage section includes a process detail page, reachable by clicking on the
Details link on the right side of rows in the process table. On the process detail page, the bottom right card contains a
list of all files produced by the pVACseq process. Visualizable files will display a Visualize button that when clicked
will load the visualization for that file.

Additionally, on the Visualize main page in the right hand column, all processes currently managed by pVA-
Capi will be listed with their visualizable files. Clicking on a file will load the visualization for that file.

Fig. 5: pVACviz page showing all visualizable files

5.6.2 Visualizing
pVAC-
seq
Re-
sults
Files

Any
fi-
nal
re-
sults
TSV
file

66 Chapter 5. pVACviz

pVACtools Documentation, Release 1.5.7

pro-
duced
by
pVAC-
seq
pro-
cesses
-

whether
launched
via
pVACviz
or
the
com-
mand
line
-

may
be
vi-
su-
al-
ized
with
pVACviz.
You may drop any file or folder in pVACapi’s /visualize directory, and it will scan it for visualizable files. These files
will then be listed on in the right column of the main Vizualize page. Click on any of the listed pages to launch the
visualization.

5.6.3 Scatterplot Visualization

On the visualization’s scatterplot are placed all of the data points contained in the tsv results file, one dot per row.
A set of tools along the side of the visualization allow you to select and manipulate the plot in various ways.

Fig. 6: pVACviz scatterplot visualization

These
icons
tog-
gle
the
fol-
low-
ing
func-
tions:

5.6. Visualizing Processes 67

pVACtools Documentation, Release 1.5.7

IconNameFunc-
tion

PanThe
pan
tool
al-
lows
the
user
to
pan
the
plot
by
left-
dragging
a
mouse
or
drag-
ging
a
fin-
ger
across
the
plot
re-
gion.

Box
Zoom

The
box
zoom
tool
al-
lows
the
user
to
de-
fine
a
rect-
an-
gu-
lar
re-
gion
to
zoom
the
plot
bounds
too,
by
left-
dragging
a
mouse,
or
drag-
ging
a
fin-
ger
across
the
plot
area.

Wheel
Zoom

The
wheel
zoom
tool
will
zoom
the
plot
in
and
out,
cen-
tered
on
the
cur-
rent
mouse
lo-
ca-
tion.
It
will
re-
spect
any
min
and
max
val-
ues
and
ranges
pre-
vent-
ing
zoom-
ing
in
and
out
be-
yond
these.

TapThe
tap
se-
lec-
tion
tool
al-
lows
the
user
to
se-
lect
sin-
gle
points
by
click-
ing
a
left
mouse
but-
ton,
or
tap-
ping
with
a
fin-
ger.

SaveThe
save
tool
pops
up
a
modal
di-
a-
log
that
al-
lows
the
user
to
save
a
PNG
im-
age
of
the
plot.

Re-
set

The
re-
set
tool
will
re-
store
the
plot
ranges
to
their
orig-
i-
nal
val-
ues.

HoverThe
hover
tool
is
a
pas-
sive
in-
spec-
tor
tool.
It
is
gen-
er-
ally
on
at
all
times,
but
can
be
con-
fig-
ured
in
the
in-
spec-
tor’s
menu
as-
so-
ci-
ated
with
the
tool-
bar.

68 Chapter 5. pVACviz

pVACtools Documentation, Release 1.5.7

5.6.4 Axis
Columns

To
the
left
of
the
scat-
ter-
plot
dis-
play
are
a
set
of
con-
trols
that
al-
low
you
to
set
the
X
and
Y
axis
for
the
scat-
ter-
plot
and
fil-
ter
the
plot’s
source
data.
The
top
two
se-
lec-
tors
al-
low you to choose any column of the result set to serve as the X/Y axis.

5.6. Visualizing Processes 69

pVACtools Documentation, Release 1.5.7

5.6.5 Filters

You may filter the source data using filters positioned beneath the axis column selectors. By default, points with null
X or Y values are filtered out; you may toggle this filter by clicking the Show button. Beneath the show button are
displayed a set of sliders that allow you to set min/max values for columns in the result set. Note that the visualization
will not show sliders for columns that contain no data.

5.6.6 Data Table

Beneath the plot and filters you will find a datatable linked to both the filters and scatterplot points. Selecting any
points in the plot will highlight the corresponsing rows in the data tables. The filters also affect the data table rows -
any rows excluded by the filters will also be excluded from the datatable.

5.6.7 Exporting Visualization Data

Two buttons are provided for CSV export of the plot data. The ‘Download’ button will provide you with a CSV file
that contains all of the data provdided to the plot - including filtered rows and rows with null X/Y coordinates. The
‘Download Selected’ button provides you with a CSV containing only the filtered/selected rows from the plot and
datatable.

5.7 pVACapi Troubleshotting

It is possible for pVACapi to get into a state where the cached data contains conflicting information to the actual
process outputs. This can be resolved by calling the pvacapi clear_cache function on the command line.

70 Chapter 5. pVACviz

CHAPTER 6

Installation

pVACtools is written for Linux but some users have been able to run it successfully on Mac OS X. If you are using
Windows you will need to set up a Linux environment, for example by setting up a virtual machine.

pVACtools requires Python 3.5., 3.6, or 3.7. Before running any installation steps, check the Python version installed
on your system:

python -V

If you don’t have Python 3.7 installed, we recommend using Conda to emulate a Python 3.7 environment. We’ve
encountered problems with users that already have Python 2.x installed when they also try to install Python 3.7. The
defaults will not be set correctly in that case. If you already have Python 2.x installed we strongly recommmend using
Conda instead of installing Python 3.7 locally.

Once you have set up your Python 3.7 environment correctly you can use pip to install pVACtools. Make sure you
have pip installed. pip is generally included in python distributions, but may need to be upgraded before use. See
the instructions for installing or upgrading pip.

After you have pip installed, type the following command on your Terminal:

pip install pvactools

You can check that pvactools has been installed under the default environment by listing all installed packages:

pip list

pip will fetch and install pVACtools and its dependencies for you. After installing, each tool of the pVACtools suite
is available in its own command line tree directly from the Terminal.

If you have an old version of pVACtools installed you might want to consider upgrading to the latest version:

pip install pvactools --upgrade

71

https://conda.io/projects/conda/en/latest/user-guide/install/index.html
https://packaging.python.org/en/latest/installing/#install-pip-setuptools-and-wheel

pVACtools Documentation, Release 1.5.7

6.1 Installing IEDB binding prediction tools (strongly recommended)

Warning: Using a local IEDB installation is strongly recommended for larger datasets or when the making
predictions for many alleles, epitope lengths, or prediction algorithms.

Warning: The IEDB binding prediction tools are only compatible with Linux.

You may create a local install of the IEDB binding prediction tools by first downloading the archives for class I and
class II from the IEDB website. If using both the Class I and the Class II tools, they both need to be installed into
the same parent directory. Note that we have tested pVACtools with the versions of IEDB class I and II listed below.
Using a different version may cause problems.

Important: By using the IEDB software, you are consenting to be bound by and become a “Licensee” for the use
of IEDB tools and are consenting to the terms and conditions of the Non-Profit Open Software License (“Non-Profit
OSL”) version 3.0.

Please read these two license agreements here before proceeding. If you do not agree to all of the terms of these
two agreements, you must not install or use the product. Companies (for-profit entities) interested in downloading
the command-line versions of the IEDB tools or running the entire analysis resource locally, should contact IEDB
(license@iedb.org) for details on licensing options.

Citing the IEDB

All publications or presentations of data generated by use of the IEDB Resource Analysis tools should include citations
to the relevant reference(s), found here.

Note: Using a local IEDB install with pVACtools requires conda.

pVACtools is written in python 3 and IEDB is only compatible with python 2.7. Because of this version mismatch, the
pVACtools modules will create a custom python 2.7 environment and execute IEDB inside of it. This requires conda.

6.1.1 MHC Class I

Download the archives for class I and unpack them.

apt-get update && apt-get install -y tcsh gawk
wget https://downloads.iedb.org/tools/mhci/2.19.2/IEDB_MHC_I-2.19.2.tar.gz
tar -zxvf IEDB_MHC_I-2.19.2.tar.gz
cd mhc_i
./configure

Note: Running the configure script requires a Python 2 environment. If you are currently emulating a Python 3
environment with Conda you will need to run source deactivate before executing the configure script.

72 Chapter 6. Installation

http://tools.iedb.org/mhci/download/
http://tools.iedb.org/mhcii/download/
http://tools.iedb.org/mhci/download/
mailto:license@iedb.org
http://tools.iedb.org/mhci/reference/
http://tools.iedb.org/mhci/download/

pVACtools Documentation, Release 1.5.7

6.1.2 MHC Class II

Download the archives for class II and unpack them.

apt-get update && apt-get install -y tcsh gawk
wget https://downloads.iedb.org/tools/mhcii/2.17.6/IEDB_MHC_II-2.17.6.tar.gz
tar -zxvf IEDB_MHC_II-2.17.6.tar.gz
cd mhc_ii
./configure.py

On older versions of the IEDB software, you might need to update some paths in the configure scripts to use relative
paths. Open the configure.py file and update the lines that set the smm and nn variables to use relative paths like
so:

smm = re.compile(curDir + "/netMHCII-1.1")
nn = re.compile(curDir + "/netMHCII-2.2")

Then run the configure script.

./configure.py

Note: Running the configure script requires a Python 2 environment. If you are currently emulating a Python 3
environment with Conda you will need to run source deactivate before executing the configure script.

6.2 Installing MHCflurry

If you wish to run the MHCflurry prediction algorithm, you will need to install the mhcflurry python package on
your system. This package is set as a dependency for the pvactools package so it should be installed automatically
when you download or upgrade the pvactools package. You can install it manually by running:

pip install mhcflurry

Note: The mhcflurry package needs to be installed in the same python 3 conda environment as the pvactools
package.

Next, you will need to download the download the MHCflurry datasets and trained models:

mhcflurry-downloads fetch

Note: The mhcflurry-downloads fetch command will need to be run manually, even if the mhcflurry pack-
age was already installed automatically as a dependency with the pvactools package.

You can check that the mhcflurry package was installed successfully by running:

mhcflurry-predict -h

This should pull up the help page for the MHCflurry predictor.

6.2. Installing MHCflurry 73

http://tools.iedb.org/mhcii/download/

pVACtools Documentation, Release 1.5.7

Please note that MHCflurry depends on tensorflow, which will automatically be installed as a dependency to the
mhcflurry package. Newer versions of tensorflow might not be compatible with older CPUs. In that case you will
see a core dump failure. Downgrading tensorflow manually to version 1.5.0 should solve this problem:

pip install tensorflow==1.5.0

6.3 Installing MHCnuggets

If you wish to run the MHCnuggets prediction algorithm, you will need to install the mhcnuggets python package on
your system. This package is set as a dependency for the pvactools package so it should be installed automatically
when you download or upgrade the pvactools package. You can install it manually by running:

pip install mhcnuggets

Note: The mhcnuggets package needs to be installed in the same python 3 conda environment as the pvactools
package.

You can check that the mhcnuggets package was installed successfully by running:

pip show mhcnuggets

This should show information about the mhcnuggets package.

Please note that MHCnuggets depends on tensorflow, which will automatically be installed as a dependency to the
mhcnuggets package. Newer versions of tensorflow might not be compatible with older CPUs. In that case you
will see a core dump failure. Downgrading tensorflow manually to version 1.5.0 should solve this problem:

pip install tensorflow==1.5.0

6.4 PostgreSQL

pVACviz and pVACapi require a Postgres database. To install Postgres follow the installation instructions.

Note: On Debian-based Linux distributions version Postgres V9.6 or lower is required.

6.5 Docker and CWL

A Docker container for pVACtools is available on DockerHub using the griffithlab/pvactools repo. This Docker con-
tainer includes installations of the IEDB class I and class II tools at /opt/iedb (--iedb-install-directory
/opt/iedb).

An example on how to run pVACseq using Docker can be found on the Getting Started page.

Common Workflow Language (CWL) tool wrappers for pVACseq, pVACfuse, and pVACvector can be downloaded
using the pvactools download_cwls command.

74 Chapter 6. Installation

http://postgresguide.com/setup/install.html
https://hub.docker.com/r/griffithlab/pvactools/

pVACtools Documentation, Release 1.5.7

6.5.1 Download CWL tool wrappers

usage: pvactools download_cwls [-h] destination_directory

positional arguments:
destination_directory

Directory for downloading CWLs

optional arguments:
-h, --help show this help message and exit

6.5. Docker and CWL 75

pVACtools Documentation, Release 1.5.7

76 Chapter 6. Installation

CHAPTER 7

Tools Used By pVACtools

7.1 IEDB (Immune Epitope Database)

• Website: https://www.iedb.org

• Citation: Vita R, Mahajan S, Overton JA, Dhanda SK, Martini S, Cantrell JR, Wheeler DK, Sette A, Peters
B. The Immune Epitope Database (IEDB): 2018 update. Nucleic Acids Res. 2018 Oct 24. doi: 10.1093/nar/
gky1006. [Epub ahead of print] PubMed PMID: 30357391.

• License: Non-Profit OSL 3.0

By using the IEDB software, you are consenting to be bound by and become a “Licensee” for the use of IEDB
tools and are consenting to the terms and conditions of the Non-Profit Open Software License (“Non-Profit
OSL”) version 3.0.

Please read these two license agreements here before proceeding. If you do not agree to all of the terms of
these two agreements, you must not install or use the product. Companies (for-profit entities) interested in
downloading the command-line versions of the IEDB tools or running the entire analysis resource locally, should
contact IEDB (license@iedb.org) for details on licensing options.

7.2 MHCflurry

• Website: http://openvax.github.io/mhcflurry/

• GitHub: https://github.com/openvax/mhcflurry

• Citation: T. J. O’Donnell, A. Rubinsteyn, M. Bonsack, A. B. Riemer, U. Laserson, and J. Hammerbacher,
“MHCflurry: Open-Source Class I MHC Binding Affinity Prediction,” Cell Systems, 2018. doi: https://doi.org/
10.1016/j.cels.2018.05.014. PubMed PMID: 29960884.

• License: Apache License 2.0

77

https://www.iedb.org
10.1093/nar/gky1006
10.1093/nar/gky1006
https://www.ncbi.nlm.nih.gov/pubmed/30357391
http://tools.iedb.org/mhci/download/
mailto:license@iedb.org
http://openvax.github.io/mhcflurry/
https://github.com/openvax/mhcflurry
https://doi.org/10.1016/j.cels.2018.05.014
https://doi.org/10.1016/j.cels.2018.05.014
https://www.ncbi.nlm.nih.gov/pubmed/29960884
https://github.com/openvax/mhcflurry/blob/master/LICENSE

pVACtools Documentation, Release 1.5.7

7.3 MHCnuggets

• Website: https://karchinlab.org/apps/appMHCnuggets.html

• GitHub: https://github.com/KarchinLab/mhcnuggets-2.0

• Citation: Bhattacharya R, Sivakumar A, Tokheim C, Beleva Guthrie V, Anagnostou V, Velculescu VE, Karchin
R (2017) Evaluation of machine learning methods to predict peptide binding to MHC Class I proteins. Submitted
[bioRxiv preprint].

• License: Apache License 2.0

7.4 NetChop

• Website: http://www.cbs.dtu.dk/services/NetChop/

• Citation: The role of the proteasome in generating cytotoxic T cell epitopes: Insights obtained from improved
predictions of proteasomal cleavage. M. Nielsen, C. Lundegaard, O. Lund, and C. Kesmir. Immunogenetics.,
57(1-2):33-41, 2005. PubMed PMID: 11983929.

• License: Academic License

7.5 NetMHCstabpan

• Website: http://www.cbs.dtu.dk/services/NetMHCstabpan/

• Citation: Pan-specific prediction of peptide-MHC-I complex stability; a correlate of T cell immunogenicity.
Michael Rasmussen, Emilio Fenoy, Mikkel Harndahl, Anne Bregnballe Kristensen, Ida Kallehauge Nielsen,
Morten Nielsen, Soren Buus. J Immunol. 2016 Aug 15;197(4):1517-24. doi: https://doi.org/10.4049/jimmunol.
1600582. PubMed PMID: 27402703.

• License: Academic License

7.6 Vaxrank

• Website: https://github.com/openvax/vaxrank

• Citation: Rubinsteyn, A., Hodes, I., Kodysh, J., & Hammerbacher, J. (2017). Vaxrank: a computational tool for
designing personalized cancer vaccines. bioRxiv, 142919.

• License: Apache License 2.0

78 Chapter 7. Tools Used By pVACtools

https://karchinlab.org/apps/appMHCnuggets.html
https://github.com/KarchinLab/mhcnuggets-2.0
https://www.biorxiv.org/content/early/2017/07/27/154757
https://github.com/KarchinLab/mhcnuggets-2.0/blob/master/LICENSE
http://www.cbs.dtu.dk/services/NetChop/
https://www.ncbi.nlm.nih.gov/pubmed/11983929
http://www.cbs.dtu.dk/cgi-bin/nph-sw_request?netchop
http://www.cbs.dtu.dk/services/NetMHCstabpan/
https://doi.org/10.4049/jimmunol.1600582
https://doi.org/10.4049/jimmunol.1600582
https://www.ncbi.nlm.nih.gov/pubmed/27402703
http://www.cbs.dtu.dk/cgi-bin/nph-sw_request?netMHCstabpan
https://github.com/openvax/vaxrank
https://www.biorxiv.org/content/10.1101/142919v2
https://github.com/openvax/vaxrank/blob/master/LICENSE

CHAPTER 8

Frequently Asked Questions

How is pVACtools licensed?

pVACtools is licensed under NPOSL-3.0.

Where can I get help?

Bug reports or feature requests can be submitted on the pVACtools Github page. You may also contact us by email at
help@pvactools.org.

How do I cite pVACtools?

Jasreet Hundal+, Susanna Kiwala+, Joshua McMichael, Christopher A Miller, Alexander T Wollam, Huiming Xia,
Connor J Liu, Sidi Zhao, Yang-Yang Feng, Aaron P Graubert, Amber Z Wollam, Jonas Neichin, Megan Neveau,
Jason Walker, William E Gillanders, Elaine R Mardis, Obi L Griffith, Malachi Griffith. pVACtools: a computational
toolkit to select and visualize cancer neoantigens. bioRxiv 501817; doi: https://doi.org/10.1101/501817. (+)equal
contribution.

Jasreet Hundal, Susanna Kiwala, Yang-Yang Feng, Connor J. Liu, Ramaswamy Govindan, William C. Chapman,
Ravindra Uppaluri, S. Joshua Swamidass, Obi L. Griffith, Elaine R. Mardis, and Malachi Griffith. Accounting for
proximal variants improves neoantigen prediction. Nature Genetics. 2018, DOI: 10.1038/s41588-018-0283-9. PMID:
30510237.

Jasreet Hundal, Beatriz M. Carreno, Allegra A. Petti, Gerald P. Linette, Obi L. Griffith, Elaine R. Mardis, and Malachi
Griffith. pVACseq: A genome-guided in silico approach to identifying tumor neoantigens. Genome Medicine. 2016,
8:11, DOI: 10.1186/s13073-016-0264-5. PMID: 26825632.

79

http://opensource.org/licenses/NPOSL-3.0
https://github.com/griffithlab/pVACtools/issues
mailto:help@pvactools.org
https://doi.org/10.1101/501817
https://doi.org/10.1101/501817
https://doi.org/10.1101/501817
https://www.nature.com/articles/s41588-018-0283-9
https://www.nature.com/articles/s41588-018-0283-9
https://www.ncbi.nlm.nih.gov/pubmed/30510237
http://www.genomemedicine.com/content/8/1/11
http://www.ncbi.nlm.nih.gov/pubmed/26825632

pVACtools Documentation, Release 1.5.7

80 Chapter 8. Frequently Asked Questions

CHAPTER 9

Release Notes

9.1 Version 1.0

9.1.1 1.0.0

This is the initial release of pVACtools, a cancer immunotherapy suite consisting of the following tools:

pVACseq

A cancer immunotherapy pipeline for identifying and prioritizing neoantigens from a list of tumor mutations.

pVACfuse

A tool for detecting neoantigens resulting from gene fusions.

pVACvector

A tool designed to aid specifically in the construction of DNA vector-based cancer vaccines.

9.1.2 1.0.1

This is a hotfix release. It fixes the following issues:

• Additional data, like example data and VEP plugins were not included in the package correctly so the commands
to download these files would fail. This has been corrected.

• Class II predictions would fail if the protein sequences used for binding predictions in IEDB were shorter than
15 peptide sequences. This has been fixed.

9.1.3 1.0.2

This is a hotfix release. It fixes the following issues:

81

pVACtools Documentation, Release 1.5.7

• The epitope length used for generating the peptide fasta when running with multiple epitope lengths was incor-
rect. This would potentially result in including fasta sequences that were shorter than the largest epitope length
which would cause an error during calls to IEDB.

• pVACseq would fail with a nondescript error message if the input VCF was not annotated with VEP before
running. A more descriptive error message has been added.

• IEDB changed the format of class II IEDB alleles which would cause an error when running with those alleles.
pVACtools will now handle transposing the affected alleles into the new format.

• The standalone binding filters had a few bugs that would result in syntax errors during runtime.

• The indexes created for each fusion entry with pVACfuse had the potential to not be unique which would result
in parsing errors downstream.

• pVACseq had the potential to use the incorrect VEP allele for positions with multiple alternate alleles which
would result in the incorrect CSQ entry getting used for some of those alternate alleles.

• pVACseq would throw an error if the chosen peptide sequence length exceeds the wildtype protein sequence
length of a transcript.

9.1.4 1.0.3

This is a hotfix release. It fixes the following issues:

• Stop-gain mutation were previously not handled correctly. If a mutation had a * (stop gain) in the VEP
Amino_acids field, pVACseq would throw an error. We now ensure that those cases are handled. pVACseq
will also skip stop-gain mutations if the resulting mutant peptide sequence is not novel.

• pVACseq would previously throw an error if multiple mutations resulted in the same consequence. This is now
handled by assigning a unique identifier to each mutation.

• We added a better warning messages if the chosen prediction algorithms and alleles MHC classes are mutually
exclusive, e.g., if only class I prediction algorithms were chosen with only class II alleles. Previously, pVACseq
would simply finish without producing any output or errors.

9.1.5 1.0.4

This is a hotfix release. It fixes the following issues:

• We discovered a couple more cases of mutations involving stop codons that would result in errors. These are
amino acid changes (VEP Amino_acids field) for large indels that would span exon boundaries (multiple * in
the Amino_acids field), or amino acid changes involving the transcript stop codon (ending in X). These cases
are now handled.

9.1.6 1.0.5

This is a hotfix release. It fixes the following issues:

• IEDB changed the format of combinatorial class II alleles to use / as a delimiter instead of -. DP alleles were
previously fixed in pull request #85 but this failed to address DQ alleles. This version fixes this oversight.

9.1.7 1.0.6

This is a hotfix release. It fixes the following issues:

82 Chapter 9. Release Notes

https://github.com/griffithlab/pVACtools/pull/85

pVACtools Documentation, Release 1.5.7

• There was a bug in how alternate alleles were resolved when matching VEP consequence fields to an entry
which resulted in certain indels to be skipped. This has now been fixed.

9.1.8 1.0.7

This is a hotfix release. It fixes the following issues:

• VEP82 and higher supports selenocysteine modicfications (amino acid “U”), which is not supported by down-
stream IEDB prediction algorithms. pVACtools now skips sequences containing this amino acid with a warning.

9.1.9 1.0.8

This is a hotfix release. It fixes the following issues:

• The log directories were accidentially included with the pVACseq example data. They are now removed.

• Some users were reporting mixed type warnings for pandas when running pVACseq. We added some options to
avoid this warning.

9.2 Version 1.1

9.2.1 1.1.0

This version adds a host of new features to pVACtools:

• pVACseq is now able to parse VAF, depth, and expression information directly from the VCF. This makes
the --additional-input-file-list option obsolete. The --additional-input-file-list
option is now deprecated and will be removed in an upcoming release. For more information on how to annotate
your VCF with readcount and expression information, see the Input File Preparation page.

• pVACseq is now able to handle proximal germline and somatic variants. In order to incorporate those into
the epitope predictions, you will need to provide a phased variants VCF to your pVACseq run using the
--phased-proximal-variants-vcf option. For more information on how to create this file, see the
Input File Preparation page.

• We added support to pVACseq for filtering on transcript support levels. This requires the input VCF to be
annotated with the TSL field by VEP. Be default, any transcripts with a TSL above 1 will be filtered out.

• The binding filter of pVACseq and pVACfuse can now be run with flexible, allele-specific binding-thresholds.
This feature can be enabled using the --allele-specific-binding-thresholds flag. The thresholds
used are taken from the IEDB recommendations.

• pVACseq now supports a --pass-only flag that will result in any VCF entries with a FILTER to be skipped.
Using this flag, only VCF entries with a FILTER of PASS or . will be processed.

• We added support for the MHCflurry and MHCnuggets prediction algorithms. These can be used by listing
MHCflurry, MHCnuggetsI (for MHC Class I alleles), and/or MHCnuggetsII (for MHC Class II alleles)
as the prediction algorithms in your run commands.

• The default --tdna-vaf and --trna-vaf cutoff values have been updated from 0.4 to 0.25. This is the
minimum VAF threshold that an epitope candidate must meet in order to pass the coverage filter.

• We now offer a graphical user interface, pVACviz, to run pVACseq as an alernative to using the command line.
pVACviz, can also be used to plot and filter your pVACseq results.

9.2. Version 1.1 83

https://help.iedb.org/hc/en-us/articles/114094151811-Selecting-thresholds-cut-offs-for-MHC-class-I-and-II-binding-predictions
http://www.biorxiv.org/content/early/2017/08/09/174243
http://karchinlab.org/apps/appMHCnuggets.html

pVACtools Documentation, Release 1.5.7

9.2.2 1.1.1

This is a hotfix release. It fixes the following issue(s):

• In version 1.1 we updated VAFs to be fractions, rather than percentages. A bug in this code change resulted in
an error when using custom VAF cutoff values instead of the default. This has now been fixed.

9.2.3 1.1.2

This is a hotfix release. It fixes the following issue(s):

• In version 1.1.0 we added a --pass-only flag to pVACseq that would result in only variants with FILTER
of PASS or . getting processed. However, this option was not getting passed along to the pVACseq process
correctly, resulting in this option not taking effect. This hotfix release fixes this issue and the --pass-only
flag should now work as expected.

9.2.4 1.1.3

This is a hotfix release. It fixes the following issue(s):

• When using the MHCnuggets prediction algorithm for MHC class II alleles (MHCnuggetsII) not all epitope
sequences were predicted for inframe insertions. This issues has now been fixed.

• For MHCflurry, cases with peptide sequences that were shorter than the desired epitope length were not handled
correctly which resulted in an error. This issue has been resolved in this release.

9.2.5 1.1.4

This is a hotfix release. It fixes the following issue(s):

• When running pVACvector with a with a pVACseq input file and the corresponding VCF, the sample name
wasn’t being passed along correctly which would cause an error if the input VCF was a multi-sample VCF.

• pVACseq would throw an error if the value of a gene or transcript expression field was empty.

9.2.6 1.1.5

This is a hotfix release. It fixes the following issue(s):

• When running pVACseq with a phased input VCF the mutation position offset of a frameshift somatic variant to
their proximal variants was not getting calculated correctly, leading to errors.

• For running pVACvector we removed a dependency on a commandline tool by using a python library instead.
This allowed us to remove a system call to a tool that required standalone installation by the user.

9.3 Version 1.2

9.3.1 1.2.0

This version introduces multiprocessing to pVACtools. This significantly speeds up the execution of pVACseq, pVAC-
fuse, and pVACvector. To turn on multiprocessing simply set the --n-threads parameter to the desired number of
parallel processes. When running the tools using the IEDB RESTful API, we recommend to keep this number small

84 Chapter 9. Release Notes

pVACtools Documentation, Release 1.5.7

(<5) as too many parallel calls to their API might lead to IEDB blocking jobs submitted from your IP address. It is rec-
ommended to use a standalone IEDB installation when running in multiprocessing mode. By default, multiprocessing
is turned off.

This version also fixes a few bugs:

• In certain cases pVACvector was not calculating the junction scores correctly, leading to potentially finding a
peptide order that would include high-binding junction epitopes or peptide orders that were not optimal. This
issue has now been fixed.

• Due to a bug in our packaging code, the 1.1.x versions of pVACtools did not include the latest version of the
pVACviz code. This version now includes the most up-to-date version of the graphical user interface.

9.4 Version 1.3

9.4.1 1.3.0

This version adds a few features and updates:

• pVACvector now accepts a list of spacers to use when testing junction epitopes. These can be specified using
the --spacers parameter with a comma-separated list of spacer peptides. Including the string None will also
test each junction without spacers. The default is None,HH,HHC,HHH,HHHD,HHHC,AAY,HHHH,HHAA,
HHL,AAL

• The --expn-val cutoff parameter has been updated to be a float instead of an integer. This allows the user
to provide a decimal cutoff for the filtering on gene and transcript expression values. Previously, only whole
numbers were accepted.

• Decimal numbers in the pVACseq reports are now rounded to three decimal places. Previously, they were not
rounded.

In addition, this version also fixes a few bugs:

• The --normal-vaf cutoff value was incorrectly defaulting to 0.2 instead of 0.02. This resulted in the cover-
age filter not being as stringent as it should’ve been.

• There were a number of bugs in pVACapi and pVACviz that would prevent a user from submitting jobs using
the interface in certain conditions. These have been resolved.

• pVACseq would previously not support SVs in the input VCF where the alt had a value of . These kinds
of variants are now supported.

9.4.2 1.3.1

This version is a hotfix release. It fixes the following issues:

• Some prediction algorithms might predict a binding affinity of 0 which could lead to division by 0 errors when
calculating the fold change. In this situation we now set the fold change to inf (infinity).

• Previously the --maximum-transcript-support-level threshold was not getting propagated to the
main pipeline step correctly, resulting in errors in the transcript support level filter.

• There was a bug in the multiprocessing logic that would result in certain steps getting executed more than once,
which in turn would lead to FileNotFound errors when these duplicate executions were happening at the same
time.

9.4. Version 1.3 85

pVACtools Documentation, Release 1.5.7

9.4.3 1.3.2

This version is a hotfix release. It fixes the following issues:

• A bug in the parsing code of the binding prediction output files would result in only some binding prediction
output files getting processed when using multiprocessing. This would potentially cause incomplete output
reports that were missing predictions for some input variants. pVACseq, pVACfuse, and pVACvector runs that
were done without multiprocessing should’ve been unaffected by this bug.

9.4.4 1.3.3

This version is a hotfix release. It fixes the following issues:

• We were previously using our own locking logic while running in multiprocssing mode which contained a bug
that could result in runs getting stuck waiting on a lock. This release switches to using the locking implementa-
tion provided by the pymp-pypi multiprocessing package.

• In an attempt to reduce cluttered output generated by Tenserflow we were previously repressing any message
generated during the import of MHCflurry and MHCnuggets. As a side effect, this would also suppress any
legitimate error messages generated during these imports which would result in the pvacseq, pvacfuse,
and pvacvector commands exiting without output. This release updates to code so that actual errors still get
output.

9.4.5 1.3.4

This version is a hotfix release. It fixes the following issues:

• We were previously using nested multiprocessing which would cause defunct child jobs and stalled runs. Switch-
ing to single-level multiprocessing fixes this issue.

• When running pVACvector from a pVACseq result file the creation of the peptide fasta file might cause an error
if the epitope was situated near the beginning of the transcript. This issue has been fixed.

9.4.6 1.3.5

This version is a hotfix release. It fixes the following issues:

• While the previous release fixed the issue of stalled processes when running IEDB-based prediction algorithms
in multiprocessing mode, we were still experience a similar problem when running with MHCflurry and MHC-
nuggets. These two prediction algorithms are tensorflow-based which in the way it is currently used in pVAC-
tools is not compatible with being run in multiprocessing mode. As a stop-gap measure this release removes
MHCnuggets and MHCflurry from being run in multiprocessing mode. This resolves the problem until we can
change our usage of these prediction algorithms to be multiprocessing-compatible.

9.4.7 1.3.6

This version is a hotfix release. It fixes the following issues:

• Tensorflow is incompatible with multiprocessing when the parent process imports tensorflow or a tensorflow-
dependent module. For this reason MHCflurry and MHCnuggets were removed from parallelization. In this
release we moved to calling MHCflurry and MHCnuggets on the command line, which allowed us to remove
our direct imports of these modules and allows us to parallelize the calls to these two prediction algorithms. All
prediction algorithms supported by pVACtools can now be used in multiprocessing mode.

86 Chapter 9. Release Notes

pVACtools Documentation, Release 1.5.7

• Some users were reporting Illegal instruction (core dumped) errors because their hardware was
incompatible with the version of tensorflow we were using. Pinning the tensorflow version to 1.5.0 with this
release should solve this problem.

• When running in multiprocessing mode while using the IEDB API, users would experience a higher probability
of failed requests to the API. The IEDB API would throw a 403 error when rejecting requests due to too many
simultaneous requests. pVACtools would previously not retry on this type of error. This release now adds retries
on this error code. We also improved the random wait time calculation between requests so that the likelihood
of multiple retries hitting at the same time has now been reduced.

• When encountering a truncated input VCF, the VCF parser used by pVACtools would throw an error that was
not indicative of the real error source. pVACseq now catches these errors and emmits a more descriptive error
message when encountering a truncated VCF.

• One option when annotating a VCF with VEP is the -total-length flag. When using this flag, the total
length would be written to the Protein_position field. pVACseq previously did not support a VCF with a
Protein_position field in this format. This release adds support for it.

• When creating the combined MHC class I and MHC class II all_epitopes file, we were previously not correctly
determining all necessary headers which would lead to incorrect output of the individual prediction algorithm
score columns. This release fixes this issue.

9.4.8 1.3.7

This version is a hotfix release. It fixes the following issues:

• The previous version accidentally removed the --additional-input-file-list option. It has been
restored in this version. Please note that it is slated for permanent removal in the next feature release (1.4.0).

9.5 Version 1.4

9.5.1 1.4.0

This version adds the following features:

• pVACvector now tests spacers iteratively. During the first iteration, the first spacer in the list of --spacers
gets tested. In the next iteration, the next spacer in the list gets added to the pool of spacers to tests, and so on.
If at any point a valid ordering is found, pVACvector will finish its run and output the result. This might result
in a slightly less optimal (but still valid) ordering but improves runtime significantly.

• If, after testing all spacers, no valid ordering if found, pVACvector will clip the beginning and/or ends of prob-
lematic peptides by one amino acid. The ordering finding process is then repeated on the updated list of peptides.
This process may be repeated a number of times, depending on the value of the --max-clip-length pa-
rameter.

• This version adds a standalone command to create the pVACvector visualizations that can be run by calling
pvacvector visualize using a pVACvector result file as the input.

• We removed the --aditional-input-file-list option to pVACseq. Readcount and expression infor-
mation are now taken directly from the VCF annotations. Instructions on how to add these annotations to your
input VCF can be found on the Input File Preparation page.

• We added support for variants to pVACseq that are only annotated as protein_altering_variant with-
out a more specific consequence of missense_variant, inframe_insertion, inframe_deletion,
or frameshift_variant.

9.5. Version 1.4 87

pVACtools Documentation, Release 1.5.7

• We resolved some syntax differences that prevented pVACtools from being run under python 3.6 or python 3.7.
pVACtools should now be compatible with all python >= 3.5 versions.

9.5.2 1.4.1

This is a hotfix release. It fixes the following issues:

• In version 1.4 we updated our usage of conda to use conda activate instead of source activate to
make it compatible with newer conda versions. However, this was leading to errors due to the way that we were
calling conda. This has been updated and should resolve these types of errors.

9.5.3 1.4.2

This is a hotfix release. It fixes the following issues:

• This releases fixes a concurrency issue with pVACapi/pVACviz that would occurr when users would try to
visualize multiple files at the same time.

9.5.4 1.4.3

This is a hotfix release. It fixes the following issues:

• IEDB will output a warning if an epitope contains only amino acid symbols that could also be nucleotides. This
would cause an error during parsing of the IEDB output files. This version updates the parser to ignore these
warnings.

• We added some improvements to pVACapi regarding database file read speeds and transaction handling.

9.5.5 1.4.4

This is a hotfix release. It fixes the following issues:

• This version starts enforcing a file size limit (14MB) to be able to visualize a result file in pVACviz. Larger files
will no longer be visualizable in pVACviz since they take too long to load.

9.5.6 1.4.5

This is a hotfix release. It fixes the following issues:

• In a previous version we implemented a faster method for reading data from the database in pVACapi. However,
this would fail if the postgres user is not a superuser. This version fixes this issue by using the previous database
file read method in this situation.

• This version marks certain columns of the output reports as not visualizable in pVACviz/pVACapi because they
contain string content that cannot be plotted in a scatterplot.

9.6 Version 1.5

9.6.1 1.5.0

This version adds the following features:

88 Chapter 9. Release Notes

pVACtools Documentation, Release 1.5.7

• This version introduces a new tool, pVACbind, which can be used to run our immunotherapy pipeline with a
peptides FASTA file as input. This new tool is similar to pVACseq but certain options and filters are removed:

– All input sequences are interpreted in isolation so corresponding wildtype sequence and score information
are not assigned. As a consequence, the filter threshold option on fold change is removed.

– Because the input format doesn’t allow for association of readcount, expression or transcript support level
data, pVACbind doesn’t run the coverage filter or transcript support level filter.

– No condensed report is generated.

Please see the pVACbind documentation for more information.

• pVACfuse now support annotated fusion files from AGFusion as input. The pVACfuse documentation has been
updated with instructions on how to run AGFusion in the Prerequisites section.

• The top score filter has been updated to take into account alternative known transcripts that might result in
non-indentical peptide sequences/epitopes. The top score filter now picks the best epitope for every available
transcript of a variant. If the resulting list of epitopes for one variant is not identical, the filter will output all
eptiopes. If the resulting list of epitopes for one variant are identical, the filter only outputs the epitope for the
transcript with the highest transcript expression value. If no expression data is available, or if multiple transcripts
remain, the filter outputs the epitope for the transcripts with the lowest transcript Ensembl ID.

• This version adds a few new options to the pvacseq generate_protein_fasta command:

– The --mutant-only option can be used to only output mutant peptide sequences instead of mutant and
wildtype sequences.

– This command now has an option to provide a pVACseq all_eptiopes or filtered TSV file as an input
(--input-tsv). This will limit the output fasta to only sequences that originated from the variants in
that file.

• This release adds a pvacfuse generate_protein_fasta command that works similarly to the
pvacseq generate_protein_fasta command but works with Integrate-NEO or AGFusion input files.

• We removed the sorting of the all_epitopes result file in order to reduce memory usage. Only the filtered files
will be sorted. This version also updates the sorting algorithm of the filtered files as follows:

– If the --top-score-metric is set to median the results are first sorted by the Median MT Score.
If multiple epitopes have the same Median MT Score they are then sorted by the Corresponding
Fold Change. The last sorting criteria is the Best MT Score.

– If the --top-score-metric is set to lowest the results are first sorted by the Best MT Score. If
multiple epitopes have the same Best MT Score they are then sorted by the Corresponding Fold
Change. The last sorting criteria is the Median MT Score.

• pVACseq, pVACfuse, and pVACbind now calculate manufacturability metrics for the predicted epitopes.
Manufacturability metrics are also calculated for all protein sequences when running the pvacseq
generate_protein_fasta and pvacfuse generate_protein_fasta commands. They are
saved in the .manufacturability.tsv along to the result fasta.

• The pVACseq score that gets calculated for epitopes in the condensed report is now converted into a rank. This
will hopefully remove any confusion about whether the previous score could be treated as an absolute measure
of immunogencity, which it was not intended for. Converting this score to a rank ensures that it gets treated in
isolation for only the epitopes in the condensed file.

• The condensed report now also outputs the mutation position as well as the full set of lowest and median wildtype
and mutant scores.

• This version adds a clear cache function to pVACapi that can be called by running pvacapi clear_cache.
Sometimes pVACapi can get into a state where the cache file contains conflicting data compared to the actual

9.6. Version 1.5 89

https://github.com/murphycj/AGFusion

pVACtools Documentation, Release 1.5.7

process outputs which results in errors. Clearing the cache using the pvacapi clear_cache function can
be used in that situation to resolve these errors.

9.6.2 1.5.1

This is a hotfix release. It fixes the following issues:

• There was a syntax error in tools/pvacseq/generate_condensed_ranked_report.py that
would result in an error when running the pvacseq generate-condensed-ranked-report com-
mands.

• We were previously not correctly catching cases where the intermediate fasta for making binding prediction was
empty. This would result in errors downstream.

9.6.3 1.5.2

This is a hotfix release. It fixes the following issues:

• AGFusion exon files may be comma-delimited. Previously, the file parser assumed the files were tab-delimited.
This release now allows AGFusion inputs that are comma- or tab-delimited.

9.6.4 1.5.3

This is a hotfix release. It fixes the following issues:

• pVACbind would previously throw an error if a peptide sequence in the input fasta was shorter than one of the
chosen epitope lengths. This issue has been fixed by first parsing the input fasta and creating individual fasta
files for each epitope length that enforce a minimum length of the peptide sequences matching the respective
epitope length.

• Previous versions of pVACtools resolved an issue where IEDB would output a warning line if one of the epitope
sequences only contained A, C, G, or T amino acids, since those sequences could also be nuclotide sequences.
However, this issue was only fixed in pVACseq, not pVACbind, or pVACvector. This release fixes this issue for
all tools.

• The wrappers for NetChop or NetMHCstabpan split the set of input epitopes into chunks of 100 before process-
ing. Due to a bug in the file splitting logic, one epitope for each chunk over 100 would be errenously dropped.
This effectively would result in less epitopes being returned in the filtered report than if running the pipelines
without NetChop or NetMHCstabpan.

9.6.5 1.5.4

This is a hotfix release. It fixes the following issues:

• The pvacseq generate_protein_fasta command would previously error out when running with a
selected peptide_sequence_length that would reduce in peptides < 7 amino acids long. This error
would occur when calculating manufacturability metrics. This release now only calculates these metrics for
peptides >=7 amino acids long.

• We updated the calculation for the flanking sequence length when generating peptide sequences to result in
peptides that are closer in length to the requested peptide_sequence_length.

• This release fixes an edge case where a frameshift mutation impacted the first amino acid of a transcript. This
case would previously throw a fatal error but will now be processed as expected.

90 Chapter 9. Release Notes

pVACtools Documentation, Release 1.5.7

9.6.6 1.5.5

This is a hotfix release. It fixes the following issues:

• The pvacfuse run command would previously output a misleading warning message if an AGFusion input
directory didn’t contain any processable fusion entries. This warning message has been fixed.

• Between VEP versions, the Downstream protein sequence prediction for some frameshift mutations was
changed to now include a leading wildtype amino acid. This potential difference in VEP-predicted Down-
stream protein sequences was not accounted for and would result in frameshift mutation protein prediction that
would duplicate this leading wildtype amino acid. This version updates our prediction pipeline to remove this
duplicated amino acid and output a fatal error if the Downstream protein sequence does not contain the leading
wildtype amino acid.

9.6.7 1.5.6

This is a hotfix release. It fixes the following issues:

• The pvacbind run command would previously error out if one of the input sequences would contain a X
stop codon. This update will remove the X amino acid and the downstream sequence before further processing
the remaining protein sequence.

• A bug in the pvacfuse top_score_filter code would previsouly result in an error when trying to run
this command. This has now been fixed.

9.6.8 1.5.7

This is a hotfix release. It fixes the following issues:

• The pvacbind run command would previously allow fasta input files with duplicated headers. However, it
would silently skip subsequent entries with duplicated headers even if the fasta sequence was novel. With this
release pVACbind will now error out if a duplicate fasta header is encounterd.

9.6. Version 1.5 91

pVACtools Documentation, Release 1.5.7

92 Chapter 9. Release Notes

CHAPTER 10

Citations

Jasreet Hundal+, Susanna Kiwala+, Joshua McMichael, Christopher A Miller, Alexander T Wollam, Huiming Xia,
Connor J Liu, Sidi Zhao, Yang-Yang Feng, Aaron P Graubert, Amber Z Wollam, Jonas Neichin, Megan Neveau,
Jason Walker, William E Gillanders, Elaine R Mardis, Obi L Griffith, Malachi Griffith. pVACtools: a computational
toolkit to select and visualize cancer neoantigens. Cancer Immunology Research. 2020 Mar;8(3):409-420. DOI:
10.1158/2326-6066.CIR-19-0401. PMID: 31907209. (+) equal contribution.

Jasreet Hundal, Susanna Kiwala, Yang-Yang Feng, Connor J. Liu, Ramaswamy Govindan, William C. Chapman,
Ravindra Uppaluri, S. Joshua Swamidass, Obi L. Griffith, Elaine R. Mardis, and Malachi Griffith. Accounting for
proximal variants improves neoantigen prediction. Nature Genetics. 2018, DOI: 10.1038/s41588-018-0283-9. PMID:
30510237.

Jasreet Hundal, Beatriz M. Carreno, Allegra A. Petti, Gerald P. Linette, Obi L. Griffith, Elaine R. Mardis, and Malachi
Griffith. pVACseq: A genome-guided in silico approach to identifying tumor neoantigens. Genome Medicine. 2016,
8:11, DOI: 10.1186/s13073-016-0264-5. PMID: 26825632.

93

https://doi.org/10.1158/2326-6066.CIR-19-0401
https://doi.org/10.1158/2326-6066.CIR-19-0401
https://www.ncbi.nlm.nih.gov/pubmed/31907209
https://www.nature.com/articles/s41588-018-0283-9
https://www.nature.com/articles/s41588-018-0283-9
https://www.ncbi.nlm.nih.gov/pubmed/30510237
http://www.genomemedicine.com/content/8/1/11
http://www.ncbi.nlm.nih.gov/pubmed/26825632

pVACtools Documentation, Release 1.5.7

94 Chapter 10. Citations

CHAPTER 11

Contact

Bug reports or feature requests can be submitted on the pVACtools Github page. You may also contact us by email at
help@pvactools.org.

To stay up-to-date on the latest pVACtools releases please join our Mailing List.

95

https://github.com/griffithlab/pVACtools/issues
mailto:help@pvactools.org

pVACtools Documentation, Release 1.5.7

96 Chapter 11. Contact

CHAPTER 12

Mailing List

To stay up-to-date on the latest pVACtools releases please join our mailing list by browsing to https://groups.google.
com/forum/#!forum/pvactools-users and clicking the blue “Join group to post” button.

97

https://groups.google.com/forum/#!forum/pvactools-users
https://groups.google.com/forum/#!forum/pvactools-users

pVACtools Documentation, Release 1.5.7

98 Chapter 12. Mailing List

CHAPTER 13

New in release 1.5.7

This is a hotfix release. It fixes the following issues:

• The pvacbind run command would previously allow fasta input files with duplicated headers. However, it
would silently skip subsequent entries with duplicated headers even if the fasta sequence was novel. With this
release pVACbind will now error out if a duplicate fasta header is encounterd.

99

pVACtools Documentation, Release 1.5.7

100 Chapter 13. New in release 1.5.7

CHAPTER 14

New in version 1.5

This version adds the following features:

• This version introduces a new tool, pVACbind, which can be used to run our immunotherapy pipeline with a
peptides FASTA file as input. This new tool is similar to pVACseq but certain options and filters are removed:

– All input sequences are interpreted in isolation so corresponding wildtype sequence and score information
are not assigned. As a consequence, the filter threshold option on fold change is removed.

– Because the input format doesn’t allow for association of readcount, expression or transcript support level
data, pVACbind doesn’t run the coverage filter or transcript support level filter.

– No condensed report is generated.

Please see the pVACbind documentation for more information.

• pVACfuse now support annotated fusion files from AGFusion as input. The pVACfuse documentation has been
updated with instructions on how to run AGFusion in the Prerequisites section.

• The top score filter has been updated to take into account alternative known transcripts that might result in
non-indentical peptide sequences/epitopes. The top score filter now picks the best epitope for every available
transcript of a variant. If the resulting list of epitopes for one variant is not identical, the filter will output all
eptiopes. If the resulting list of epitopes for one variant are identical, the filter only outputs the epitope for the
transcript with the highest transcript expression value. If no expression data is available, or if multiple transcripts
remain, the filter outputs the epitope for the transcripts with the lowest transcript Ensembl ID.

• This version adds a few new options to the pvacseq generate_protein_fasta command:

– The --mutant-only option can be used to only output mutant peptide sequences instead of mutant and
wildtype sequences.

– This command now has an option to provide a pVACseq all_eptiopes or filtered TSV file as an input
(--input-tsv). This will limit the output fasta to only sequences that originated from the variants in
that file.

• This release adds a pvacfuse generate_protein_fasta command that works similarly to the
pvacseq generate_protein_fasta command but works with Integrate-NEO or AGFusion input files.

101

https://github.com/murphycj/AGFusion

pVACtools Documentation, Release 1.5.7

• We removed the sorting of the all_epitopes result file in order to reduce memory usage. Only the filtered files
will be sorted. This version also updates the sorting algorithm of the filtered files as follows:

– If the --top-score-metric is set to median the results are first sorted by the Median MT Score.
If multiple epitopes have the same Median MT Score they are then sorted by the Corresponding
Fold Change. The last sorting criteria is the Best MT Score.

– If the --top-score-metric is set to lowest the results are first sorted by the Best MT Score. If
multiple epitopes have the same Best MT Score they are then sorted by the Corresponding Fold
Change. The last sorting criteria is the Median MT Score.

• pVACseq, pVACfuse, and pVACbind now calculate manufacturability metrics for the predicted epitopes.
Manufacturability metrics are also calculated for all protein sequences when running the pvacseq
generate_protein_fasta and pvacfuse generate_protein_fasta commands. They are
saved in the .manufacturability.tsv along to the result fasta.

• The pVACseq score that gets calculated for epitopes in the condensed report is now converted into a rank. This
will hopefully remove any confusion about whether the previous score could be treated as an absolute measure
of immunogencity, which it was not intended for. Converting this score to a rank ensures that it gets treated in
isolation for only the epitopes in the condensed file.

• The condensed report now also outputs the mutation position as well as the full set of lowest and median wildtype
and mutant scores.

• This version adds a clear cache function to pVACapi that can be called by running pvacapi clear_cache.
Sometimes pVACapi can get into a state where the cache file contains conflicting data compared to the actual
process outputs which results in errors. Clearing the cache using the pvacapi clear_cache function can
be used in that situation to resolve these errors.

Past release notes can be found on our Release Notes page.

To stay up-to-date on the latest pVACtools releases please join our Mailing List.

102 Chapter 14. New in version 1.5

CHAPTER 15

Citations

Jasreet Hundal , Susanna Kiwala , Joshua McMichael, Chris Miller, Huiming Xia, Alex Wollam, Conner Liu, Sidi
Zhao, Yang-Yang Feng, Aaron Graubert, Amber Wollam, Jonas Neichin, Megan Neveau, Jason Walker, William
Gillanders, Elaine Mardis, Obi Griffith, Malachi Griffith. pVACtools: A Computational Toolkit to Identify and Visu-
alize Cancer Neoantigens. Cancer Immunology Research. 2020 Mar;8(3):409-420. doi: 10.1158/2326-6066.CIR-19-
0401. PMID: 31907209.

Jasreet Hundal, Susanna Kiwala, Yang-Yang Feng, Connor J. Liu, Ramaswamy Govindan, William C. Chapman,
Ravindra Uppaluri, S. Joshua Swamidass, Obi L. Griffith, Elaine R. Mardis, and Malachi Griffith. Accounting for
proximal variants improves neoantigen prediction. Nature Genetics. 2018, DOI: 10.1038/s41588-018-0283-9. PMID:
30510237.

Jasreet Hundal, Beatriz M. Carreno, Allegra A. Petti, Gerald P. Linette, Obi L. Griffith, Elaine R. Mardis, and Malachi
Griffith. pVACseq: A genome-guided in silico approach to identifying tumor neoantigens. Genome Medicine. 2016,
8:11, DOI: 10.1186/s13073-016-0264-5. PMID: 26825632.

103

https://www.ncbi.nlm.nih.gov/pubmed/31907209
https://www.nature.com/articles/s41588-018-0283-9
https://www.nature.com/articles/s41588-018-0283-9
https://www.ncbi.nlm.nih.gov/pubmed/30510237
http://www.genomemedicine.com/content/8/1/11
http://www.ncbi.nlm.nih.gov/pubmed/26825632

pVACtools Documentation, Release 1.5.7

104 Chapter 15. Citations

CHAPTER 16

Source code

The pVACtools source code is available in GitHub.

105

https://github.com/griffithlab/pVACtools

pVACtools Documentation, Release 1.5.7

106 Chapter 16. Source code

CHAPTER 17

License

This project is licensed under NPOSL-3.0.

107

http://opensource.org/licenses/NPOSL-3.0

	pVACseq
	Features
	Input File Preparation
	Getting Started
	Usage
	Output Files
	Filtering Commands
	Additional Commands
	Optional Downstream Analysis Tools
	Common Errors
	Frequently Asked Questions

	pVACbind
	Prerequisites
	Getting Started
	Usage
	Output Files
	Filtering Commands
	Additional Commands

	pVACfuse
	Prerequisites
	Getting Started
	Usage
	Output Files
	Filtering Commands
	Additional Commands
	Optional Downstream Analysis Tools

	pVACvector
	Prerequisites
	Getting Started
	Usage
	Additional Commands
	Output Files

	pVACviz
	Installation
	Running pVACviz
	pVACapi Directories
	Starting Processes
	Managing Processes
	Visualizing Processes
	pVACapi Troubleshotting

	Installation
	Installing IEDB binding prediction tools (strongly recommended)
	Installing MHCflurry
	Installing MHCnuggets
	PostgreSQL
	Docker and CWL

	Tools Used By pVACtools
	IEDB (Immune Epitope Database)
	MHCflurry
	MHCnuggets
	NetChop
	NetMHCstabpan
	Vaxrank

	Frequently Asked Questions
	Release Notes
	Version 1.0
	Version 1.1
	Version 1.2
	Version 1.3
	Version 1.4
	Version 1.5

	Citations
	Contact
	Mailing List
	New in release 1.5.7
	New in version 1.5
	Citations
	Source code
	License

